
147Data Mining: Practical Machine Learning Tools and Techniques
Copyright © 2011 Elsevier Inc. All rights of reproduction in any form reserved.

CHAPTER

5Credibility: Evaluating
What’s Been Learned

Evaluation is the key to making real progress in data mining. There are lots of ways
of inferring structure from data: We have encountered many already and will see
further refinements, and new methods, in Chapter 6. However, in order to determine
which ones to use on a particular problem we need systematic ways to evaluate how
different methods work and to compare one with another. But evaluation is not as
simple as it might appear at first sight.

What’s the problem? We have the training set; surely we can just look at how
well different methods do on that. Well, no: As we will see very shortly, performance
on the training set is definitely not a good indicator of performance on an indepen-
dent test set. We need ways of predicting performance bounds in practice, based on
experiments with whatever data can be obtained.

When a vast supply of data is available, this is no problem: Just make a model
based on a large training set, and try it out on another large test set. But although
data mining sometimes involves “big data”—particularly in marketing, sales, and
customer support applications—it is often the case that data, quality data, is scarce.
The oil slicks mentioned in Chapter 1 (page 23) had to be detected and marked
manually—a skilled and labor-intensive process—before being used as training
data. Even in the personal loan application data (page 22), there turned out to be
only 1000 training examples of the appropriate type. The electricity supply data
(page 24) went back 15 years, 5000 days—but only 15 Christmas days and Thanks-
givings, and just four February 29s and presidential elections. The electromechanical
diagnosis application (page 25) was able to capitalize on 20 years of recorded
experience, but this yielded only 300 usable examples of faults. The marketing
and sales applications (page 26) certainly involve big data, but many others do
not: Training data frequently relies on specialist human expertise—and that is
always in short supply.

The question of predicting performance based on limited data is an interesting,
and still controversial, one. We will encounter many different techniques, of which
one—repeated cross-validation—is probably the method of choice in most practical
limited-data situations. Comparing the performance of different machine learning
schemes on a given problem is another matter that is not as easy as it sounds: To be
sure that apparent differences are not caused by chance effects, statistical tests are
needed.

148 CHAPTER 5 Credibility: Evaluating What’s Been Learned

So far we have tacitly assumed that what is being predicted is the ability to clas-
sify test instances accurately; however, some situations involve predicting class
probabilities rather than the classes themselves, and others involve predicting
numeric rather than nominal values. Different methods are needed in each case. Then
we look at the question of cost. In most practical data mining situations, the cost of
a misclassification error depends on the type of error it is—whether, for example, a
positive example was erroneously classified as negative or vice versa. When doing
data mining, and evaluating its performance, it is often essential to take these costs
into account. Fortunately, there are simple techniques to make most learning schemes
cost sensitive without grappling with the algorithm’s internals. Finally, the whole
notion of evaluation has fascinating philosophical connections. For 2000 years,
philosophers have debated the question of how to evaluate scientific theories, and
the issues are brought into sharp focus by data mining because what is extracted is
essentially a “theory” of the data.

5.1 TRAINING AND TESTING
For classification problems, it is natural to measure a classifier’s performance in
terms of the error rate. The classifier predicts the class of each instance: If it is
correct, that is counted as a success; if not, it is an error. The error rate is just the
proportion of errors made over a whole set of instances, and it measures the overall
performance of the classifier.

Of course, what we are interested in is the likely future performance on new data,
not the past performance on old data. We already know the classifications of each
instance in the training set, which after all is why we can use it for training. We are
not generally interested in learning about those classifications—although we might
be if our purpose is data cleansing rather than prediction. So the question is, is the
error rate on old data likely to be a good indicator of the error rate on new data?
The answer is a resounding no—not if the old data was used during the learning
process to train the classifier.

This is a surprising fact, and a very important one. The error rate on the training
set is not likely to be a good indicator of future performance. Why? Because the
classifier has been learned from the very same training data, any estimate of perfor-
mance based on that data will be optimistic, even hopelessly optimistic.

We have already seen an example of this in the labor relations dataset. Figure
1.3(b) (page 18) was generated directly from the training data, and Figure 1.3(a)
was obtained from it by a process of pruning. The former is potentially more accurate
on the data that was used to train the classifier, but may perform less well on inde-
pendent test data because it is overfitted to the training data. The first tree will look
good according to the error rate on the training data, better than the second tree. But
this does not necessarily reflect how they will perform on independent test data.

The error rate on the training data is called the resubstitution error because it is
calculated by resubstituting the training instances into a classifier that was

 5.1 Training and Testing 149

constructed from them. Although it is not a reliable predictor of the true error rate
on new data, it is nevertheless often useful to know.

To predict the performance of a classifier on new data, we need to assess its error
rate on a dataset that played no part in the formation of the classifier. This indepen-
dent dataset is called the test set. We assume that both the training data and the test
data are representative samples of the underlying problem.

In some cases the test data might be distinct in nature from the training data.
Consider, for example, the credit risk problem from Section 1.3 (page 22). Suppose
the bank had training data from branches in New York and Florida and wanted to
know how well a classifier trained on one of these datasets would perform in a
new branch in Nebraska. It should probably use the Florida data as test data for
evaluating the New York–trained classifier and the New York data to evaluate the
Florida-trained classifier. If the datasets were amalgamated before training, perfor-
mance on the test data would probably not be a good indicator of performance on
future data in a completely different state.

It is important that the test data is not used in any way to create the classifier.
For example, some learning schemes involve two stages, one to come up with a
basic structure and the second to optimize parameters involved in that structure, and
separate sets of data may be needed in the two stages. Or you might try out several
learning schemes on the training data and then evaluate them—on a fresh dataset,
of course—to see which one works best. But none of this data may be used to
determine an estimate of the future error rate.

In such situations people often talk about three datasets: the training data, the
validation data, and the test data. The training data is used by one or more learning
schemes to come up with classifiers. The validation data is used to optimize param-
eters of those classifier, or to select a particular one. Then the test data is used to
calculate the error rate of the final, optimized, method. Each of the three sets must
be chosen independently: The validation set must be different from the training set
to obtain good performance in the optimization or selection stage, and the test set
must be different from both to obtain a reliable estimate of the true error rate.

It may be that once the error rate has been determined, the test data is bundled
back into the training data to produce a new classifier for actual use. There is nothing
wrong with this: It is just a way of maximizing the amount of data used to generate
the classifier that will actually be employed in practice. With well-behaved learning
schemes, this should not decrease predictive performance. Also, once the validation
data has been used—maybe to determine the best type of learning scheme to use—
then it can be bundled back into the training data to retrain that learning scheme,
maximizing the use of data.

If lots of data is available, there is no problem: We take a large sample and use
it for training; then another, independent large sample of different data and use it
for testing. Provided both samples are representative, the error rate on the test set
will give a good indication of future performance. Generally, the larger the training
sample, the better the classifier, although the returns begin to diminish once a certain
volume of training data is exceeded. And the larger the test sample, the more accurate

150 CHAPTER 5 Credibility: Evaluating What’s Been Learned

the error estimate. The accuracy of the error estimate can be quantified statistically,
as we will see in Section 5.2.

The real problem occurs when there is not a vast supply of data available. In
many situations the training data must be classified manually—and so must the test
data, of course, to obtain error estimates. This limits the amount of data that can be
used for training, validation, and testing, and the problem becomes how to make the
most of a limited dataset. From this dataset, a certain amount is held over for
testing—this is called the holdout procedure—and the remainder used for training
(and, if necessary, part of that is set aside for validation). There’s a dilemma here:
To find a good classifier, we want to use as much of the data as possible for training;
to obtain a good error estimate, we want to use as much of it as possible for testing.
Sections 5.3 and 5.4 review widely used methods for dealing with this dilemma.

5.2 PREDICTING PERFORMANCE
Suppose we measure the error of a classifier on a test set and obtain a certain numeri-
cal error rate—say 25%. Actually, in this section we talk about success rate rather
than error rate, so this corresponds to a success rate of 75%. Now, this is only an
estimate. What can you say about the true success rate on the target population?
Sure, it’s expected to be close to 75%. But how close—within 5 or 10%? It must
depend on the size of the test set. Naturally, we would be more confident of the 75%
figure if it were based on a test set of 10,000 instances rather than a test set of 100
instances. But how much more confident would we be?

To answer these questions, we need some statistical reasoning. In statistics, a
succession of independent events that either succeed or fail is called a Bernoulli
process. The classic example is coin tossing. Each toss is an independent event. Let’s
say we always predict heads; but rather than “heads” or “tails,” each toss is consid-
ered a “success” or a “failure.” Let’s say the coin is biased, but we don’t know what
the probability of heads is. Then, if we actually toss the coin 100 times and 75 of
the tosses are heads, we have a situation very like the one just described for a clas-
sifier with an observed 75% success rate on a test set. What can we say about the
true success probability? In other words, imagine that there is a Bernoulli process—a
biased coin—with a true (but unknown) success rate of p. Suppose that out of N
trials, S are successes; thus, the observed success rate is f = S/N. The question is,
what does this tell you about the true success rate p?

The answer to this question is usually expressed as a confidence interval—that
is, p lies within a certain specified interval with a certain specified confidence. For
example, if S = 750 successes are observed out of N = 1000 trials, this indicates that
the true success rate must be around 75%. But how close to 75%? It turns out that
with 80% confidence, the true success rate p lies between 73.2% and 76.7%. If
S = 75 successes are observed out of N = 100 trials, this also indicates that the true
success rate must be around 75%. But the experiment is smaller, and so the 80%
confidence interval for p is wider, stretching from 69.1 to 80.1%.

 5.2 Predicting Performance 151

These figures are easy to relate to qualitatively, but how are they derived quantitatively?
We reason as follows: The mean and variance of a single Bernoulli trial with success rate
p are p and p(1 − p), respectively. If N trials are taken from a Bernoulli process, the
expected success rate f = S/N is a random variable with the same mean p; the variance is
reduced by a factor of N to p(1 − p)/N. For large N, the distribution of this random
variable approaches the normal distribution. These are all facts of statistics—we will not
go into how they are derived.

The probability that a random variable X, with zero mean, lies within a certain
confidence range of width 2z is

Pr − ≤ ≤[] =z X z c

For a normal distribution, values of c and corresponding values of z are given in tables
printed at the back of most statistical texts. However, the tabulations conventionally take
a slightly different form: They give the confidence that X will lie outside the range, and
they give it for the upper part of the range only:

Pr X z≥[]
This is called a one-tailed probability because it refers only to the upper “tail” of the
distribution. Normal distributions are symmetric, so the probabilities for the lower tail

Pr X z≤ −[]
are just the same.

Table 5.1 gives an example. Like other tables for the normal distribution, this
assumes that the random variable X has a mean of 0 and a variance of 1. Alternatively,
you might say that the z figures are measured in standard deviations from the mean.
Thus, the figure for Pr[X ≥ z] = 5% implies that there is a 5% chance that X lies more
than 1.65 standard deviations above the mean. Because the distribution is symmetric,
the chance that X lies more than 1.65 standard deviations from the mean (above or
below) is 10%, or

Pr . . %− ≤ ≤[] =1 65 1 65 90X

Now all we need to do is reduce the random variable f to have zero mean and unit
variance. We do this by subtracting the mean p and dividing by the standard
deviation p p N()1 − . This leads to

Pr
()

− < −
−

<

 =z f p

p p N
z c

1

Here is the procedure for finding confidence limits. Given a particular confidence figure
c, consult Table 5.1 for the corresponding z value. To use the table you will first have to
subtract c from 1 and then halve the result, so that for c = 90% you use the table entry
for 5%. Linear interpolation can be used for intermediate confidence levels. Then write
the inequality in the preceding expression as an equality and invert it to find an
expression for p.

The final step involves solving a quadratic equation. Although this is not hard to do, it
leads to an unpleasantly formidable expression for the confidence limits:

p f z
N

z f
N

f
N

z
N

z
N

= + ± − +

 +

2 2 2

2

2

2 4
1

The ± in this expression gives two values for p that represent the upper and lower confidence
boundaries. Although the formula looks complicated, it is not hard to work out in particular
cases.

152 CHAPTER 5 Credibility: Evaluating What’s Been Learned

This result can be used to obtain the values in the numeric example given earlier.
Setting f = 75%, N = 1000, and c = 80% (so that z = 1.28) leads to the interval [0.732,
0.767] for p, and N = 100 leads to [0.691, 0.801] for the same level of confidence.
Note that the normal distribution assumption is only valid for large N (say, N > 100).
Thus, f = 75% and N = 10 leads to confidence limits [0.549, 0.881], but these should
be taken with a grain of salt.

Table 5.1 Confidence Limits for the Normal Distribution

Pr[X ≥ z] z

0.1% 3.09
0.5% 2.58
1% 2.33
5% 1.65

10% 1.28
20% 0.84
40% 0.25

5.3 CROSS-VALIDATION
Now consider what to do when the amount of data for training and testing is limited.
The holdout method reserves a certain amount for testing and uses the remainder
for training (and sets part of that aside for validation, if required). In practical terms,
it is common to hold out one-third of the data for testing and use the remaining
two-thirds for training.

Of course, you may be unlucky: The sample used for training (or testing) might
not be representative. In general, you cannot tell whether a sample is representative
or not. But there is one simple check that might be worthwhile: Each class in the
full dataset should be represented in about the right proportion in the training and
testing sets. If, by bad luck, all examples with a certain class were omitted from
the training set, you could hardly expect a classifier learned from that data to perform
well on examples of that class—and the situation would be exacerbated by the fact
that the class would necessarily be overrepresented in the test set because none of
its instances made it into the training set! Instead, you should ensure that the random
sampling is done in a way that guarantees that each class is properly represented
in both training and test sets. This procedure is called stratification, and we might
speak of stratified holdout. While it is generally well worth doing, stratification
provides only a primitive safeguard against uneven representation in training and
test sets.

A more general way to mitigate any bias caused by the particular sample chosen
for holdout is to repeat the whole process, training and testing, several times with
different random samples. In each iteration a certain proportion, say two-thirds, of

 5.3 Cross-Validation 153

the data is randomly selected for training, possibly with stratification, and the
remainder is used for testing. The error rates on the different iterations are averaged
to yield an overall error rate. This is the repeated holdout method of error rate
estimation.

In a single holdout procedure, you might consider swapping the roles of the
testing and training data—that is, train the system on the test data and test it on
the training data—and average the two results, thus reducing the effect of uneven
representation in training and test sets. Unfortunately, this is only really plausible
with a 50:50 split between training and test data, which is generally not ideal—it
is better to use more than half the data for training even at the expense of test data.
However, a simple variant forms the basis of an important statistical technique
called cross-validation. In cross-validation, you decide on a fixed number of folds,
or partitions, of the data. Suppose we use three. Then the data is split into three
approximately equal partitions; each in turn is used for testing and the remainder
is used for training. That is, use two-thirds of the data for training and one-third
for testing, and repeat the procedure three times so that in the end, every instance
has been used exactly once for testing. This is called threefold cross-validation,
and if stratification is adopted as well—which it often is—it is stratified threefold
cross-validation.

The standard way of predicting the error rate of a learning technique given a
single, fixed sample of data is to use stratified tenfold cross-validation. The data is
divided randomly into 10 parts in which the class is represented in approximately
the same proportions as in the full dataset. Each part is held out in turn and the
learning scheme trained on the remaining nine-tenths; then its error rate is calculated
on the holdout set. Thus, the learning procedure is executed a total of 10 times on
different training sets (each set has a lot in common with the others). Finally, the 10
error estimates are averaged to yield an overall error estimate.

Why 10? Extensive tests on numerous different datasets, with different learning
techniques, have shown that 10 is about the right number of folds to get the best
estimate of error, and there is also some theoretical evidence that backs this up.
Although these arguments are by no means conclusive, and debate continues to
rage in machine learning and data mining circles about what is the best scheme
for evaluation, tenfold cross-validation has become the standard method in practi-
cal terms. Tests have also shown that the use of stratification improves results
slightly. Thus, the standard evaluation technique in situations where only limited
data is available is stratified tenfold cross-validation. Note that neither the strati-
fication nor the division into 10 folds has to be exact: It is enough to divide the
data into 10 approximately equal sets in which the various class values are rep-
resented in approximately the right proportion. Moreover, there is nothing magic
about the exact number 10: 5-fold or 20-fold cross-validation is likely to be almost
as good.

A single tenfold cross-validation might not be enough to get a reliable error
estimate. Different tenfold cross-validation experiments with the same learning
scheme and dataset often produce different results because of the effect of random

154 CHAPTER 5 Credibility: Evaluating What’s Been Learned

variation in choosing the folds themselves. Stratification reduces the variation, but
it certainly does not eliminate it entirely. When seeking an accurate error estimate,
it is standard procedure to repeat the cross-validation process 10 times—that is, 10
times tenfold cross-validation—and average the results. This involves invoking the
learning algorithm 100 times on datasets that are all nine-tenths the size of the
original. Getting a good measure of performance is a computation-intensive
undertaking.

5.4 OTHER ESTIMATES
Tenfold cross-validation is the standard way of measuring the error rate of a learning
scheme on a particular dataset; for reliable results, 10 times tenfold cross-validation.
But many other methods are used instead. Two that are particularly prevalent are
leave-one-out cross-validation and the bootstrap.

Leave-One-Out Cross-Validation
Leave-one-out cross-validation is simply n-fold cross-validation, where n is the
number of instances in the dataset. Each instance in turn is left out, and the learning
scheme is trained on all the remaining instances. It is judged by its correctness on
the remaining instance—one or zero for success or failure, respectively. The results
of all n judgments, one for each member of the dataset, are averaged, and that
average represents the final error estimate.

This procedure is an attractive one for two reasons. First, the greatest possible
amount of data is used for training in each case, which presumably increases the
chance that the classifier is an accurate one. Second, the procedure is deterministic:
No random sampling is involved. There is no point in repeating it 10 times, or
repeating it at all: The same result will be obtained each time. Set against this is the
high computational cost, because the entire learning procedure must be executed n
times and this is usually infeasible for large datasets. Nevertheless, leave-one-out
seems to offer a chance of squeezing the maximum out of a small dataset and getting
as accurate an estimate as possible.

But there is a disadvantage to leave-one-out cross-validation, apart from the
computational expense. By its very nature, it cannot be stratified—worse than that,
it guarantees a nonstratified sample. Stratification involves getting the correct pro-
portion of examples in each class into the test set, and this is impossible when the
test set contains only a single example. A dramatic, although highly artificial, illus-
tration of the problems this might cause is to imagine a completely random dataset
that contains exactly the same number of instances of each of two classes. The best
that an inducer can do with random data is to predict the majority class, giving a
true error rate of 50%. But in each fold of leave-one-out, the opposite class to the
test instance is in the majority—and therefore the predictions will always be incor-
rect, leading to an estimated error rate of 100%!

 5.4 Other Estimates 155

The Bootstrap
The second estimation method we describe, the bootstrap, is based on the statistical
procedure of sampling with replacement. Previously, whenever a sample was taken
from the dataset to form a training or test set, it was drawn without replacement.
That is, the same instance, once selected, could not be selected again. It is like
picking teams for football: You cannot choose the same person twice. But dataset
instances are not like people. Most learning schemes can use the same instance
twice, and it makes a difference in the result of learning if it is present in the training
set twice. (Mathematical sticklers will notice that we should not really be talking
about “sets” at all if the same object can appear more than once.)

The idea of the bootstrap is to sample the dataset with replacement to form a
training set. We will describe a particular variant, mysteriously (but for a reason that
will soon become apparent) called the 0.632 bootstrap. For this, a dataset of n
instances is sampled n times, with replacement, to give another dataset of n instances.
Because some elements in this second dataset will (almost certainly) be repeated,
there must be some instances in the original dataset that have not been picked—we
will use these as test instances.

What is the chance that a particular instance will not be picked for the training set? It has
a 1/n probability of being picked each time and so a 1 – 1/n probability of not being
picked. Multiply these probabilities together for a sufficient number of picking
opportunities, n, and the result is a figure of

1 1 0 3681−

≈ =−

n
e

n

.

where e is the base of natural logarithms, 2.7183 (not the error rate!) This gives the
chance of a particular instance not being picked at all. Thus, for a reasonably large
dataset, the test set will contain about 36.8% of the instances and the training set will
contain about 63.2% of them (now you can see why it’s called the 0.632 bootstrap).
Some instances will be repeated in the training set, bringing it up to a total size of n,
the same as in the original dataset.

The figure obtained by training a learning system on the training set and cal-
culating its error over the test set will be a pessimistic estimate of the true error
rate because the training set, although its size is n, nevertheless contains only 63%
of the instances, which is not a great deal compared, for example, with the 90%
used in tenfold cross-validation. To compensate for this, we combine the test-set
error rate with the resubstitution error on the instances in the training set. The
resubstitution figure, as we warned earlier, gives a very optimistic estimate of the
true error and should certainly not be used as an error figure on its own. But the
bootstrap procedure combines it with the test error rate to give a final estimate e
as follows:

156 CHAPTER 5 Credibility: Evaluating What’s Been Learned

e e e= × + ×0 632 0 368. .test instances training instances

Then, the whole bootstrap procedure is repeated several times, with different
replacement samples for the training set, and the results are averaged.

The bootstrap procedure may be the best way of estimating the error rate for
very small datasets. However, like leave-one-out cross-validation, it has disadvan-
tages that can be illustrated by considering a special, artificial situation. In fact, the
very dataset we considered above will do: a completely random dataset with two
classes of equal size. The true error rate is 50% for any prediction rule. But a scheme
that memorized the training set would give a perfect resubstitution score of 100%,
so that etraining instances = 0, and the 0.632 bootstrap will mix this in with a weight of
0.368 to give an overall error rate of only 31.6% (0.632 × 50% + 0.368 × 0%), which
is misleadingly optimistic.

5.5 COMPARING DATA MINING SCHEMES
We often need to compare two different learning schemes on the same problem to
see which is the better one to use. It seems simple: Estimate the error using cross-
validation (or any other suitable estimation procedure), perhaps repeated several
times, and choose the scheme with the smaller estimate. This is quite sufficient in
many practical applications: If one scheme has a lower estimated error than another
on a particular dataset, the best we can do is to use the former scheme’s model.
However, it may be that the difference is simply due to estimation error, and in some
circumstances it is important to determine whether one scheme is really better than
another on a particular problem. This is a standard challenge for machine learning
researchers. If a new learning algorithm is proposed, its proponents must show that
it improves on the state of the art for the problem at hand and demonstrate that the
observed improvement is not just a chance effect in the estimation process.

This is a job for a statistical test based on confidence bounds, the kind we met
previously when trying to predict true performance from a given test-set error rate.
If there were unlimited data, we could use a large amount for training and evaluate
performance on a large independent test set, obtaining confidence bounds just as
before. However, if the difference turns out to be significant we must ensure that
this is not just because of the particular dataset we happened to base the experiment
on. What we want to determine is whether one scheme is better or worse than another
on average, across all possible training and test datasets that can be drawn from the
domain. Because the amount of training data naturally affects performance, all
datasets should be the same size. Indeed, the experiment might be repeated with
different sizes to obtain a learning curve.

For the moment, assume that the supply of data is unlimited. For definiteness,
suppose that cross-validation is being used to obtain the error estimates (other esti-
mators, such as repeated cross-validation, are equally viable). For each learning
scheme we can draw several datasets of the same size, obtain an accuracy estimate

 5.5 Comparing Data Mining Schemes 157

for each dataset using cross-validation, and compute the mean of the estimates. Each
cross-validation experiment yields a different, independent error estimate. What we
are interested in is the mean accuracy across all possible datasets of the same size,
and whether this mean is greater for one scheme or the other.

From this point of view, we are trying to determine whether the mean of a set
of samples—cross-validation estimates for the various datasets that we sampled
from the domain—is significantly greater than, or significantly less than, the mean
of another. This is a job for a statistical device known as the t-test, or Student’s t-test.
Because the same cross-validation experiment can be used for both learning schemes
to obtain a matched pair of results for each dataset, a more sensitive version of the
t-test known as a paired t-test can be used.

We need some notation. There is a set of samples x1, x2, …, xk obtained by successive
tenfold cross-validations using one learning scheme, and a second set of samples y1,
y2, …, yk obtained by successive tenfold cross-validations using the other. Each cross-
validation estimate is generated using a different dataset, but all datasets are of the same
size and from the same domain. We will get best results if exactly the same cross-
validation partitions are used for both schemes, so that x1 and y1 are obtained using the
same cross-validation split, as are x2 and y2, and so on. Denote the mean of the first set
of samples by x and the mean of the second set by y . We are trying to determine whether
x is significantly different from y .

If there are enough samples, the mean (x) of a set of independent samples (x1, x2, …,
xk) has a normal (i.e., Gaussian) distribution, regardless of the distribution underlying the
samples themselves. Call the true value of the mean µ. If we knew the variance of that
normal distribution, so that it could be reduced to have zero mean and unit variance, we
could obtain confidence limits on µ given the mean of the samples (x). However, the
variance is unknown, and the only way we can obtain it is to estimate it from the set of
samples.

That is not hard to do. The variance of x can be estimated by dividing the variance
calculated from the samples x1, x2, …, xk—call it σx

2—by k. We can reduce the
distribution of x to have zero mean and unit variance by using

x

kx

− µ
σ 2

The fact that we have to estimate the variance changes things somewhat. Because the
variance is only an estimate, this does not have a normal distribution (although it does
become normal for large values of k). Instead, it has what is called a Student’s
distribution with k – 1 degrees of freedom. What this means in practice is that we have to
use a table of confidence intervals for the Student’s distribution rather than the
confidence table for the normal distribution given earlier. For 9 degrees of freedom (which
is the correct number if we are using the average of 10 cross-validations) the appropriate
confidence limits are shown in Table 5.2. If you compare them with Table 5.1 you will
see that the Student’s figures are slightly more conservative—for a given degree of
confidence, the interval is slightly wider—and this reflects the additional uncertainty
caused by having to estimate the variance. Different tables are needed for different
numbers of degrees of freedom, and if there are more than 100 degrees of freedom the
confidence limits are very close to those for the normal distribution. Like Table 5.1, the
figures in Table 5.2 are for a “one-sided” confidence interval.

158 CHAPTER 5 Credibility: Evaluating What’s Been Learned

To decide whether the means x and y , each an average of the same number k of
samples, are the same or not, we consider the differences di between corresponding
observations, di = xi − yi. This is legitimate because the observations are paired. The
mean of this difference is just the difference between the two means, d x y= − , and,
like the means themselves, it has a Student’s distribution with k – 1 degrees of freedom.
If the means are the same, the difference is zero (this is called the null hypothesis);
if they’re significantly different, the difference will be significantly different from zero.
So for a given confidence level, we will check whether the actual difference exceeds the
confidence limit.

First, reduce the difference to a zero-mean, unit-variance variable called the t-statistic,

t d

kd

=
σ 2

where σd
2 is the variance of the difference samples. Then, decide on a confidence

level—generally, 5% or 1% is used in practice. From this, the confidence limit z is
determined using Table 5.2 if k is 10; if it is not, a confidence table of the Student
distribution for the k value in question is used. A two-tailed test is appropriate because we
do not know in advance whether the mean of the x’s is likely to be greater than that of
the y’s or vice versa; thus, for a 1% test we use the value corresponding to 0.5% in Table
5.2. If the value of t according to the last formula is greater than z, or less than –z, we
reject the null hypothesis that the means are the same and conclude that there really is a
significant difference between the two learning methods on that domain for that dataset
size.

Two observations are worth making on this procedure. The first is technical: What if
the observations were not paired? That is, what if we were unable, for some reason, to
assess the error of each learning scheme on the same datasets? What if the number of
datasets for each scheme was not even the same? These conditions could arise if someone
else had evaluated one of the schemes and published several different estimates for a
particular domain and dataset size—or perhaps just their mean and variance—and we
wished to compare this with a different learning scheme. Then it is necessary to use a
regular, nonpaired t-test. Instead of taking the mean of the difference, d , we use the
difference of the means, x y− . Of course, that’s the same thing: The mean of the
difference is the difference of the means. But the variance of the difference d is not the
same. If the variance of the samples x1, x2, …, xk is σx

2 and the variance of the samples
y1, y2, …, y! is σy

2,

σ σx y

k

2 2

+
!

is a good estimate of the variance of the difference of the means. It is this variance (or
rather its square root) that should be used as the denominator of the t-statistic given
previously. The degrees of freedom, necessary for consulting Student’s confidence tables,
should be taken conservatively to be the minimum of the degrees of freedom of the two
samples. Essentially, knowing that the observations are paired allows the use of a better
estimate for the variance, which will produce tighter confidence bounds.

The second observation concerns the assumption that there is essentially unlimited
data, so that several independent datasets of the right size can be used. In practice, there
is usually only a single dataset of limited size. What can be done? We could split the data
into subsets (perhaps 10) and perform a cross-validation on each one. However, the
overall result will only tell us whether a learning scheme is preferable for that particular
size—one-tenth of the original dataset. Alternatively, the original dataset could be
reused—for example, with different randomizations of the dataset for each cross-
validation. However, the resulting cross-validation estimates will not be independent

 5.6 Predicting Probabilities 159

because they are not based on independent datasets. In practice, this means that a
difference may be judged to be significant when in fact it is not. Indeed, just increasing
the number of samples k—that is, the number of cross-validation runs—will eventually
yield an apparently significant difference because the value of the t-statistic increases
without bound.

Various modifications of the standard t-test have been proposed to circumvent this
problem, all of them heuristic and somewhat lacking in theoretical justification. One that
appears to work well in practice is the corrected resampled t-test. Assume for the moment
that the repeated holdout method is used instead of cross-validation, repeated k times on
different random splits of the same dataset to obtain accuracy estimates for two learning
schemes. Each time, n1 instances are used for training and n2 for testing, and differences
di are computed from performance on the test data. The corrected resampled t-test uses
the modified statistic

t d

k
n
n d

=
+

1 2

1

2σ

in exactly the same way as the standard t-statistic. A closer look at the formula shows that
its value cannot be increased simply by increasing k. The same modified statistic can be
used with repeated cross-validation, which is just a special case of repeated holdout in
which the individual test sets for one cross-validation do not overlap. For tenfold cross-
validation repeated 10 times, k =100, n2/n1 = 0.1/0.9, and σd

2 is based on 100
differences.

Table 5.2 Confidence Limits for Student’s Distribution
with 9 Degrees of Freedom

Pr[X ≥ z] z

0.1% 4.30
0.5% 3.25
1% 2.82
5% 1.83

10% 1.38
20% 0.88

5.6 PREDICTING PROBABILITIES
Throughout this chapter we have tacitly assumed that the goal is to maximize the
success rate of the predictions. The outcome for each test instance is either correct,
if the prediction agrees with the actual value for that instance, or incorrect, if it does
not. There are no grays: Everything is black or white, correct or incorrect. In many
situations, this is the most appropriate perspective. If the learning scheme, when it
is actually applied, results in either a correct or an incorrect prediction, success is

160 CHAPTER 5 Credibility: Evaluating What’s Been Learned

the right measure to use. This is sometimes called a 0 – 1 loss function: The “loss”
is either 0 if the prediction is correct or 1 if it is not. The use of loss is conventional,
although a more optimistic terminology might couch the outcome in terms of profit
instead.

Other situations are softer-edged. Most learning schemes can associate a prob-
ability with each prediction (as the Naïve Bayes scheme does). It might be more
natural to take this probability into account when judging correctness. For example,
a correct outcome predicted with a probability of 99% should perhaps weigh more
heavily than one predicted with a probability of 51%, and, in a two-class situation,
perhaps the latter is not all that much better than an incorrect outcome predicted
with probability 51%. Whether it is appropriate to take prediction probabilities into
account depends on the application. If the ultimate application really is just a predic-
tion of the outcome, and no prizes are awarded for a realistic assessment of the
likelihood of the prediction, it does not seem appropriate to use probabilities. If the
prediction is subject to further processing, however—perhaps involving assessment
by a person, or a cost analysis, or maybe even serving as input to a second-level
learning process—then it may well be appropriate to take prediction probabilities
into account.

Quadratic Loss Function
Suppose for a single instance there are k possible outcomes, or classes, and for
a given instance the learning scheme comes up with a probability vector p1, p2,
…, pk for the classes (where these probabilities sum to 1). The actual outcome
for that instance will be one of the possible classes. However, it is convenient
to express it as a vector a1, a2, …, ak whose ith component, where i is the actual
class, is 1 and all other components are 0. We can express the penalty associated
with this situation as a loss function that depends on both the p vector and the
a vector.

One criterion that is frequently used to evaluate probabilistic prediction is the
quadratic loss function:

()p aj jj
−∑ 2

Note that this is for a single instance: The summation is over possible outputs, not
over different instances. Just one of the a’s will be 1 and the rest 0, so the sum
contains contributions of pj

2 for the incorrect predictions and (1– pi)2 for the correct
one. Consequently, it can be written as

1 2 2− + ∑p pi jj

where i is the correct class. When the test set contains several instances, the loss
function is summed over them all.

 5.6 Predicting Probabilities 161

It is an interesting theoretical fact that if you seek to minimize the value of the quadratic
loss function in a situation where the actual class is generated probabilistically, the best
strategy is to choose for the p vector the actual probabilities of the different outcomes—
that is, pi = Pr[class = i]. If the true probabilities are known, they will be the best values
for p. If they are not, a system that strives to minimize the quadratic loss function will be
encouraged to use its best estimate of Pr[class = i] as the value for pi.

This is quite easy to see. Denote the true probabilities by p1*, p2*, …, pk* so that pi*
= Pr[class = i]. The expected value of the quadratic loss function over test instances can
be rewritten as

E p a E p E p a E a

p p p p

j jj j j j jj

j j j j

() ([] [] [])

(

− = − +

= − +
∑ ∑2 2 2

2

2

2 * *))

(() ())
j

j j j jj
p p p p

∑
∑= − + −* * *2 1

The first stage involves bringing the expectation inside the sum and expanding the square.
For the second, pj is just a constant and the expected value of aj is simply pj*; moreover,
because aj is either 0 or 1, aj

2 = aj and its expected value is pj* as well. The third stage is
straightforward algebra. To minimize the resulting sum, it is clear that it is best to choose
pj = pj*, so that the squared term disappears and all that remains is a term that is just
the variance of the true distribution governing the actual class.

Minimizing the squared error has a long history in prediction problems. In the
present context, the quadratic loss function forces the predictor to be honest about
choosing its best estimate of the probabilities—or, rather, it gives preference to
predictors that are able to make the best guess at the true probabilities. Moreover,
the quadratic loss function has some useful theoretical properties that we will not
go into here. For all these reasons, it is frequently used as the criterion of success
in probabilistic prediction situations.

Informational Loss Function
Another popular criterion used to evaluate probabilistic prediction is the informa-
tional loss function,

− log2 pi

where the ith prediction is the correct one. This is in fact identical to the negative
of the log-likelihood function that is optimized by logistic regression, described in
Section 4.6 (modulo a constant factor, which is determined by the base of the loga-
rithm). It represents the information (in bits) required to express the actual class i
with respect to the probability distribution p1, p2, …, pk. In other words, if you were
given the probability distribution and someone had to communicate to you which
class was the one that actually occurred, this is the number of bits they would need
to encode the information if they did it as effectively as possible. (Of course, it is

162 CHAPTER 5 Credibility: Evaluating What’s Been Learned

always possible to use more bits.) Because probabilities are always less than 1, their
logarithms are negative, and the minus sign makes the outcome positive. For
example, in a two-class situation—heads or tails—with an equal probability of each
class, the occurrence of a head would take 1 bit to transmit because −log2 1/2 is 1.

The expected value of the informational loss function, if the true probabilities are p1*, p2*,
…, pk*, is

− − − −p p p p p pk k1 2 1 2 2 2 2* * *log log log…

Like the quadratic loss function, this expression is minimized by choosing pj = pj*, in
which case the expression becomes the entropy of the true distribution:

− − − −p p p p p pk k1 2 1 2 2 2 2* * * * * *log log log…

Thus, the informational loss function also rewards honesty in predictors that know the true
probabilities, and encourages predictors that do not to put forward their best guess.

One problem with the informational loss function is that if you assign a probabil-
ity of 0 to an event that actually occurs, the function’s value is infinity. This corre-
sponds to losing your shirt when gambling. Prudent predictors operating under the
informational loss function do not assign zero probability to any outcome. This does
lead to a problem when no information is available about that outcome on which to
base a prediction. This is called the zero-frequency problem, and various plausible
solutions have been proposed, such as the Laplace estimator discussed for Naïve
Bayes in Chapter 4 (page 93).

Discussion
If you are in the business of evaluating predictions of probabilities, which of
the two loss functions should you use? That’s a good question, and there is no
universally agreed-on answer—it’s really a matter of taste. They both do the
fundamental job expected of a loss function: They give maximum reward to
predictors that are capable of predicting the true probabilities accurately. However,
there are some objective differences between the two that may help you form
an opinion.

The quadratic loss function takes into account not only the probability assigned
to the event that actually occurred but also the other probabilities. For example, in
a four-class situation, suppose you assigned 40% to the class that actually came up
and distributed the remainder among the other three classes. The quadratic loss will
depend on how you distributed it because of the sum of the pj

2 that occurs in the
expression given earlier for the quadratic loss function. The loss will be smallest if
the 60% was distributed evenly among the three classes: An uneven distribution will
increase the sum of the squares. The informational loss function, on the other hand,
depends solely on the probability assigned to the class that actually occurred. If

 5.7 Counting the Cost 163

you’re gambling on a particular event coming up, and it does, who cares about
potential winnings from other events?

If you assign a very small probability to the class that actually occurs, the infor-
mation loss function will penalize you massively. The maximum penalty, for a zero
probability, is infinite. The quadratic loss function, on the other hand, is milder, being
bounded by

1 2+ ∑ pjj

which can never exceed 2.
Finally, proponents of the informational loss function point to a general theory

of performance assessment in learning called the minimum description length (MDL)
principle. They argue that the size of the structures that a scheme learns can be
measured in bits of information, and if the same units are used to measure the
loss, the two can be combined in useful and powerful ways. We return to this in
Section 5.9.

5.7 COUNTING THE COST
The evaluations that have been discussed so far do not take into account the cost of
making wrong decisions, wrong classifications. Optimizing the classification rate
without considering the cost of the errors often leads to strange results. In one case,
machine learning was being used to determine the exact day that each cow in a dairy
herd was in estrus, or “in heat.” Cows were identified by electronic ear tags, and
various attributes were used such as milk volume and chemical composition (recorded
automatically by a high-tech milking machine) and milking order—for cows are
regular beasts and generally arrive in the milking shed in the same order, except in
unusual circumstances such as estrus. In a modern dairy operation it’s important to
know when a cow is ready: Animals are fertilized by artificial insemination and
missing a cycle will delay calving unnecessarily, causing complications down the
line. In early experiments, machine learning schemes stubbornly predicted that each
cow was never in estrus. Like humans, cows have a menstrual cycle of approxi-
mately 30 days, so this “null” rule is correct about 97% of the time—an impressive
degree of accuracy in any agricultural domain! What was wanted, of course, was
rules that predicted the “in estrus” situation more accurately than the “not in estrus”
one: The costs of the two kinds of error were different. Evaluation by classification
accuracy tacitly assumes equal error costs.

Other examples where errors cost different amounts include loan decisions: The
cost of lending to a defaulter is far greater than the lost-business cost of refusing a
loan to a nondefaulter. And oil-slick detection: The cost of failing to detect an
environment-threatening real slick is far greater than the cost of a false alarm. And
load forecasting: The cost of gearing up electricity generators for a storm that doesn’t
hit is far less than the cost of being caught completely unprepared. And diagnosis:

164 CHAPTER 5 Credibility: Evaluating What’s Been Learned

Table 5.3 Different Outcomes of a Two-Class Prediction

Predicted Class

yes no

Actual Class yes true positive false negative

no false positive true negative

The cost of misidentifying problems with a machine that turns out to be free of faults
is less than the cost of overlooking problems with one that is about to fail. And
promotional mailing: The cost of sending junk mail to a household that doesn’t
respond is far less than the lost-business cost of not sending it to a household that
would have responded. Why—these are all the examples from Chapter 1! In truth,
you’d be hard pressed to find an application in which the costs of different kinds of
errors were the same.

In the two-class case with classes yes and no—lend or not lend, mark a suspicious
patch as an oil slick or not, and so on—a single prediction has the four different
possible outcomes shown in Table 5.3. The true positives (TP) and true negatives
(TN) are correct classifications. A false positive (FP) is when the outcome is incor-
rectly predicted as yes (or positive) when it is actually no (negative). A false negative
(FN) is when the outcome is incorrectly predicted as negative when it is actually
positive. The true positive rate is TP divided by the total number of positives, which
is TP + FN; the false positive rate is FP divided by the total number of negatives,
which is FP + TN. The overall success rate is the number of correct classifications
divided by the total number of classifications:

TP TN
TP TN FP FN

+
+ + +

Finally, the error rate is 1 minus this.
In multiclass prediction, the result on a test set is often displayed as a two-

dimensional confusion matrix with a row and column for each class. Each matrix
element shows the number of test examples for which the actual class is the row
and the predicted class is the column. Good results correspond to large numbers
down the main diagonal and small, ideally zero, off-diagonal elements. Table 5.4(a)
shows a numeric example with three classes. In this case, the test set has 200
instances (the sum of the nine numbers in the matrix), and 88 + 40 + 12 = 140 of
them are predicted correctly, so the success rate is 70%.

But is this a fair measure of overall success? How many agreements would you
expect by chance? This predictor predicts a total of 120 a’s, 60 b’s, and 20 c’s; what
if you had a random predictor that predicted the same total numbers of the three
classes? The answer is shown in Table 5.4(b). Its first row divides the 100 a’s in the
test set into these overall proportions, and the second and third rows do the same

 165

Ta
bl

e
5.

4
D

iff
er

en
t

O
ut

co
m

es
 o

f
a

Th
re

e-
Cl

as
s

Pr
ed

ic
tio

n:
 (

a)
 A

ct
ua

l
an

d
(b

)
Ex

pe
ct

ed

P
re

di
ct

ed
 C

la
ss

P
re

di
ct

ed
 C

la
ss

a
b

c
To

ta
l

a
b

c
To

ta
l

A
ct

ua
l

C
la

ss
a

88
10

2
10

0
A

ct
ua

l
C

la
ss

a
60

30
10

10
0

b
14

40
6

60
b

36
18

6
60

c
18

10
12

40
c

24
12

4
40

To
ta

l
12

0
60

20
To

ta
l

12
0

60
20

(a
)

(b
)

166 CHAPTER 5 Credibility: Evaluating What’s Been Learned

thing for the other two classes. Of course, the row and column totals for this matrix
are the same as before—the number of instances hasn’t changed, and we have
ensured that the random predictor predicts the same number of a’s, b’s, and c’s as
the actual predictor.

This random predictor gets 60 + 18 + 4 = 82 instances correct. A measure called
the Kappa statistic takes this expected figure into account by deducting it from the
predictor’s successes and expressing the result as a proportion of the total for a
perfect predictor, to yield 140 – 82 = 58 extra successes out of a possible total of
200 – 82 = 118, or 49.2%. The maximum value of Kappa is 100%, and the expected
value for a random predictor with the same column totals is 0. In summary, the
Kappa statistic is used to measure the agreement between predicted and observed
categorizations of a dataset, while correcting for an agreement that occurs by chance.
However, like the plain success rate, it does not take costs into account.

Cost-Sensitive Classification
If the costs are known, they can be incorporated into a financial analysis of the
decision-making process. In the two-class case, in which the confusion matrix is like
that of Table 5.3, the two kinds of error—false positives and false negatives—will
have different costs; likewise, the two types of correct classification may have
different benefits. In the two-class case, costs can be summarized in the form of a
2 × 2 matrix in which the diagonal elements represent the two types of correct clas-
sification and the off-diagonal elements represent the two types of error. In the
multiclass case this generalizes to a square matrix whose size is the number of
classes, and again the diagonal elements represent the cost of correct classification.
Table 5.5(a) and (b) shows default cost matrixes for the two- and three-class cases,
whose values simply give the number of errors: Misclassification costs are all 1.

Taking the cost matrix into account replaces the success rate by the average cost
(or, thinking more positively, profit) per decision. Although we will not do so here,
a complete financial analysis of the decision-making process might also take into
account the cost of using the machine learning tool—including the cost of gathering
the training data—and the cost of using the model, or decision structure, that it

Table 5.5 Default Cost Matrixes: (a) Two-Class Case and (b) Three-Class Case

Predicted Class Predicted Class

yes no a b c

Actual
Class

yes 0 1
Actual
Class

a 0 1 1

no 1 0 b 1 0 1

c 1 1 0

(a) (b)

 5.7 Counting the Cost 167

produces—including the cost of determining the attributes for the test instances. If
all costs are known, and the projected number of the four different outcomes in the
cost matrix can be estimated, say using cross-validation, it is straightforward to
perform this kind of financial analysis.

Given a cost matrix, you can calculate the cost of a particular learned model on
a given test set just by summing the relevant elements of the cost matrix for the
model’s prediction for each test instance. Here, costs are ignored when making
predictions, but taken into account when evaluating them.

If the model outputs the probability associated with each prediction, it can be
adjusted to minimize the expected cost of the predictions. Given a set of predicted
probabilities for each outcome on a certain test instance, one normally selects the
most likely outcome. Instead, the model could predict the class with the smallest
expected misclassification cost. For example, suppose in a three-class situation the
model assigns the classes a, b, and c to a test instance with probabilities pa, pb, and
pc, and the cost matrix is that in Table 5.5(b). If it predicts a, the expected cost of
the prediction is obtained by multiplying the first column of the matrix, [0,1,1], by
the probability vector, [pa, pb, pc], yielding pb + pc , or 1 – pa , because the three
probabilities sum to 1. Similarly, the costs for predicting the other two classes are
1 – pb and 1 – pc. For this cost matrix, choosing the prediction with the lowest
expected cost is the same as choosing the one with the greatest probability. For a
different cost matrix it might be different.

We have assumed that the learning scheme outputs probabilities, as Naïve Bayes
does. Even if they do not normally output probabilities, most classifiers can easily
be adapted to compute them. In a decision tree, for example, the probability distribu-
tion for a test instance is just the distribution of classes at the corresponding leaf.

Cost-Sensitive Learning
We have seen how a classifier, built without taking costs into consideration, can be
used to make predictions that are sensitive to the cost matrix. In this case, costs are
ignored at training time but used at prediction time. An alternative is to do just the
opposite: Take the cost matrix into account during the training process and ignore
costs at prediction time. In principle, better performance might be obtained if the
classifier were tailored by the learning algorithm to the cost matrix.

In the two-class situation, there is a simple and general way to make any learning
scheme cost sensitive. The idea is to generate training data with a different propor-
tion of yes and no instances. Suppose you artificially increase the number of no
instances by a factor of 10 and use the resulting dataset for training. If the learning
scheme is striving to minimize the number of errors, it will come up with a decision
structure that is biased toward avoiding errors on the no instances because such
errors are effectively penalized tenfold. If data with the original proportion of no
instances is used for testing, fewer errors will be made on these than on yes
instances—that is, there will be fewer false positives than false negatives—because
false positives have been weighted 10 times more heavily than false negatives.

168 CHAPTER 5 Credibility: Evaluating What’s Been Learned

Varying the proportion of instances in the training set is a general technique for
building cost-sensitive classifiers.

One way to vary the proportion of training instances is to duplicate instances in
the dataset. However, many learning schemes allow instances to be weighted. (As
we mentioned in Section 3.2, this is a common technique for handling missing
values.) Instance weights are normally initialized to 1. To build cost-sensitive clas-
sifiers the weights can be initialized to the relative cost of the two kinds of error,
false positives and false negatives.

Lift Charts
In practice, costs are rarely known with any degree of accuracy, and people will
want to ponder various different scenarios. Imagine you’re in the direct-mailing
business and are contemplating a mass mailout of a promotional offer to 1,000,000
households, most of whom won’t respond, of course. Let us say that, based on previ-
ous experience, the proportion that normally respond is known to be 0.1% (1000
respondents). Suppose a data mining tool is available that, based on known informa-
tion about the households, identifies a subset of 100,000 for which the response rate
is 0.4% (400 respondents). It may well pay off to restrict the mailout to these 100,000
households; this, of course, depends on the mailing cost compared with the return
gained for each response to the offer. In marketing terminology, the increase in
response rate, a factor of 4 in this case, is known as the lift factor yielded by the
learning tool. If you knew the costs, you could determine the payoff implied by a
particular lift factor.

But you probably want to evaluate other possibilities too. The same data mining
scheme, with different parameter settings, may be able to identify 400,000 house-
holds for which the response rate will be 0.2% (800 respondents), corresponding
to a lift factor of 2. Again, whether this would be a more profitable target for
the mailout can be calculated from the costs involved. It may be necessary to
factor in the cost of creating and using the model, including collecting the infor-
mation that is required to come up with the attribute values. After all, if developing
the model is very expensive, a mass mailing may be more cost effective than a
targeted one.

Given a learning scheme that outputs probabilities for the predicted class of each
member of the set of test instances (as Naïve Bayes does), your job is to find subsets
of test instances that have a high proportion of positive instances, higher than in
the test set as a whole. To do this, the instances should be sorted in descending
order of predicted probability of yes. Then, to find a sample of a given size with
the greatest possible proportion of positive instances, just read the requisite number
of instances off the list, starting at the top. If each test instance’s class is known,
you can calculate the lift factor by simply counting the number of positive instances
that the sample includes, dividing by the sample size to obtain a success proportion,
and dividing by the success proportion for the complete test set to determine the
lift factor.

 5.7 Counting the Cost 169

Table 5.6 Data for a Lift Chart

Rank Predicted Actual Class

 1 0.95 yes
 2 0.93 yes
 3 0.93 no
 4 0.88 yes
 5 0.86 yes
 6 0.85 yes
 7 0.82 yes
 8 0.80 yes
 9 0.80 no
10 0.79 yes
11 0.77 no
12 0.76 yes
13 0.73 yes
14 0.65 no
15 0.63 yes
16 0.58 no
17 0.56 yes
18 0.49 no
19 0.48 yes
… … …

and not the actual classes, your best bet would be the top 10 ranking instances.
Eight of these are positive, so the success proportion for this sample is 80%,
corresponding to a lift factor of about 2.4.

If you knew the different costs involved, you could work them out for each sample
size and choose the most profitable. But a graphical depiction of the various possibili-
ties will often be far more revealing than presenting a single “optimal” decision.
Repeating the operation for different-size samples allows you to plot a lift chart like
that of Figure 5.1. The horizontal axis shows the sample size as a proportion of the
total possible mailout. The vertical axis shows the number of responses obtained. The
lower left and upper right points correspond to no mailout at all, with a response of
0, and a full mailout, with a response of 1000. The diagonal line gives the expected
result for different-size random samples. But we do not choose random samples; we
choose those instances that, according to the data mining tool, are most likely to
generate a positive response. These correspond to the upper line, which is derived by
summing the actual responses over the corresponding percentage of the instance list
sorted in probability order. The two particular scenarios described previously are
marked: a 10% mailout that yields 400 respondents and a 40% one that yields 800.

Where you’d like to be in a lift chart is near the upper left corner: At the very
best, 1000 responses from a mailout of just 1000, where you send only to those

Table 5.6 shows an example,
for a small dataset that has 150
instances, of which 50 are yes
responses—an overall success
proportion of 33%. The instances
have been sorted in descending
probability order according to the
predicted probability of a yes
response. The first instance is
the one that the learning scheme
thinks is the most likely to be
positive, the second is the next
most likely, and so on. The
numeric values of the probabili-
ties are unimportant: Rank is the
only thing that matters. With each
rank is given the actual class of
the instance. Thus, the learning
scheme was correct about items 1
and 2—they are indeed positives—
but wrong about item 3, which
turned out to be negative. Now, if
you were seeking the most prom-
ising sample of size 10, but only
knew the predicted probabilities

170 CHAPTER 5 Credibility: Evaluating What’s Been Learned

FIGURE 5.1

A hypothetical lift chart.

0

200

400

600

800

1000

0 20 40 60 80 100
Sample Size (%)

N
um

be
r

of
 R

es
po

nd
en

ts

households that will respond and are rewarded with a 100% success rate. Any selec-
tion procedure worthy of the name will keep you above the diagonal—otherwise,
you’d be seeing a response that is worse than for random sampling. So the operating
part of the diagram is the upper triangle, and the farther to the upper left the better.

Figure 5.2(a) shows a visualization that allows various cost scenarios to be
explored in an interactive fashion (called the cost–benefit analyzer, it forms
part of the Weka workbench described in Part III). Here it is displaying results
for predictions generated by the Naïve Bayes classifier on a real-world direct-
mail data set. In this example, 47,706 instances were used for training and a
further 47,706 for testing. The test instances were ranked according to the
predicted probability of a response to the mailout. The graphs show a lift chart
on the left and the total cost (or benefit), plotted against the sample size, on
the right. At the lower left is a confusion matrix; at the lower right is a cost
matrix.

Cost or benefit values associated with incorrect or correct classifications can be
entered into the matrix and affect the shape of the curve above. The horizontal slider
in the middle allows users to vary the percentage of the population that is selected
from the ranked list. Alternatively, one can determine the sample size by adjusting
the recall level (the proportion of positives to be included in the sample) or by
adjusting a threshold on the probability of the positive class, which here corresponds
to a response to the mailout. When the slider is moved, a large cross shows the cor-
responding point on both graphs. The total cost or benefit associated with the
selected sample size is shown at the lower right, along with the expected response
to a random mailout of the same size.

 5.7 Counting the Cost 171

FIGURE 5.2

Analyzing the expected benefit of a mailing campaign when the cost of mailing is
(a) $0.50 and (b) $0.80.

(a)

(b)

172 CHAPTER 5 Credibility: Evaluating What’s Been Learned

In the cost matrix in Figure 5.2(a), a cost of $0.50—the cost of mailing—has
been associated with nonrespondents and a benefit of $15.00 with respondents (after
deducting the mailing cost). Under these conditions, and using the Naïve Bayes
classifier, there is no subset from the ranked list of prospects that yields a greater
profit than mailing to the entire population. However, a slightly higher mailing cost
changes the situation dramatically, and Figure 5.2(b) shows what happens when it
is increased to $0.80. Assuming the same profit of $15.00 per respondent, a maximum
profit of $4,560.60 is achieved by mailing to the top 46.7% of the population. In
this situation, a random sample of the same size achieves a loss of $99.59.

ROC Curves
Lift charts are a valuable tool, widely used in marketing. They are closely related
to a graphical technique for evaluating data mining schemes known as ROC curves,
which are used in just the same situation, where the learner is trying to select samples
of test instances that have a high proportion of positives. The acronym stands for
receiver operating characteristic, a term used in signal detection to characterize the
tradeoff between hit rate and false-alarm rate over a noisy channel. ROC curves
depict the performance of a classifier without regard to class distribution or error
costs. They plot the true positive rate on the vertical axis against the true negative
rate on the horizontal axis. The former is the number of positives included in the
sample, expressed as a percentage of the total number of positives (TP Rate =
100 × TP/(TP + FN)); the latter is the number of negatives included in the
sample, expressed as a percentage of the total number of negatives (FP Rate =
100 × FP/(FP + TN)). The vertical axis is the same as the lift chart’s except that it
is expressed as a percentage. The horizontal axis is slightly different—it is the
number of negatives rather than the sample size. However, in direct marketing situ-
ations where the proportion of positives is very small anyway (like 0.1%), there is
negligible difference between the size of a sample and the number of negatives it
contains, so the ROC curve and lift chart look very similar. As with lift charts, the
upper left corner is the place to be.

Figure 5.3 shows an example ROC curve—the jagged line—for the sample of
test data shown earlier in Table 5.6. You can follow it along with the table. From
the origin: Go up two (two positives), along one (one negative), up five (five posi-
tives), along two (two negatives), up one, along one, up two, and so on. Each point
corresponds to drawing a line at a certain position on the ranked list, counting the
yes’s and no’s above it, and plotting them vertically and horizontally, respectively.
As you go farther down the list, corresponding to a larger sample, the number of
positives and negatives both increase.

The jagged ROC line in Figure 5.3 depends intimately on the details of the par-
ticular sample of test data. This sample dependence can be reduced by applying
cross-validation. For each different number of no’s—that is, each position along the
horizontal axis—take just enough of the highest-ranked instances to include that
number of no’s, and count the number of yes’s they contain. Finally, average that

 5.7 Counting the Cost 173

FIGURE 5.3

A sample ROC curve.

0

20

40

60

80

100

0 20 40 60 80 100
False Positives (%)

T
ru

e
Po

si
tiv

es
 (

%
)

number over different folds of the cross-validation. The result is a smooth curve like
that in Figure 5.3—although in reality such curves do not generally look quite so
smooth.

This is just one way of using cross-validation to generate ROC curves. A simpler
approach is to collect the predicted probabilities for all the various test sets (of which
there are 10 in a tenfold cross-validation), along with the true class labels of the
corresponding instances, and generate a single ranked list based on this data. This
assumes that the probability estimates from the classifiers built from the different
training sets are all based on equally sized random samples of the data. It is not clear
which method is preferable. However, the latter method is easier to implement.

If the learning scheme does not allow the instances to be ordered, you can first
make it cost-sensitive as described earlier. For each fold of a tenfold cross-validation,
weight the instances for a selection of different cost ratios, train the scheme on each
weighted set, count the true positives and false positives in the test set, and plot the
resulting point on the ROC axes. (It doesn’t matter whether the test set is weighted
or not because the axes in the ROC diagram are expressed as the percentage of true
and false positives.) However, for probabilistic classifiers such as Naïve Bayes it is
far more costly than the method described previously because it involves a separate
learning problem for every point on the curve.

It is instructive to look at ROC curves obtained using different learning schemes.
For example, in Figure 5.4, method A excels if a small, focused sample is sought—
that is, if you are working toward the left side of the graph. Clearly, if you aim to
cover just 40% of the true positives you should choose method A, which gives a
false positive rate of around 5%, rather than method B, which gives more than 20%

174 CHAPTER 5 Credibility: Evaluating What’s Been Learned

FIGURE 5.4

ROC curves for two learning schemes.

0

20

40

60

80

100

0 20 40 60 80 100
False Positives (%)

T
ru

e
Po

si
tiv

es
 (

%
)

A

B

false positives. But method B excels if you are planning a large sample: If you are
covering 80% of the true positives, B will give a false positive rate of 60% as com-
pared with method A’s 80%. The shaded area is called the convex hull of the two
curves, and you should always operate at a point that lies on the upper boundary of
the convex hull.

What about the region in the middle where neither method A nor method B lies
on the convex hull? It is a remarkable fact that you can get anywhere in the shaded
region by combining methods A and B and using them at random with appropriate
probabilities. To see this, choose a particular probability cutoff for method A that
gives true and false positive rates of tA and fA, respectively, and another cutoff for
method B that gives tB and fB. If you use these two schemes at random with prob-
abilities p and q, where p + q = 1, then you will get true and false positive rates
of p . tA + q . tB and p . fA + q . fB. This represents a point lying on the straight line
joining the points (tA, fA) and (tB, fB), and by varying p and q you can trace out the
whole line between these two points. By this device, the entire shaded region can
be reached. Only if a particular scheme generates a point that lies on the convex
hull should it be used alone. Otherwise, it would always be better to use a combi-
nation of classifiers corresponding to a point that lies on the convex hull.

Recall–Precision Curves
People have grappled with the fundamental tradeoff illustrated by lift charts and
ROC curves in a wide variety of domains. Information retrieval is a good example.
Given a query, a Web search engine produces a list of hits that represent documents

supposedly relevant to the query. Compare one system that locates 100 documents,
40 of which are relevant, with another that locates 400 documents, 80 of which are
relevant. Which is better? The answer should now be obvious: It depends on the
relative cost of false positives, documents returned that aren’t relevant, and false
negatives, documents that are relevant but aren’t returned. Information retrieval
researchers define parameters called recall and precision:

Recall
number of documents retrieved that are relevant

tota
=

ll number of documents that are relevant

Precision
number of documents retrieved that are relevant

t
=

ootal number of documents that are retrieved

For example, if the list of yes’s and no’s in Table 5.6 represented a ranked list
of retrieved documents and whether they were relevant or not, and the entire col-
lection contained a total of 40 relevant documents, then “recall at 10” would refer
to the recall for the top 10 documents—that is, 8/40 = 20%—while “precision at
10” would be 8/10 = 80%. Information retrieval experts use recall–precision curves
that plot one against the other, for different numbers of retrieved documents, in just
the same way as ROC curves and lift charts—except that, because the axes are dif-
ferent, the curves are hyperbolic in shape and the desired operating point is toward
the upper right.

Discussion
Table 5.7 summarizes the three different ways introduced for evaluating the same
basic tradeoff; TP, FP, TN, and FN are the numbers of true positives, false positives,
true negatives, and false negatives, respectively. You want to choose a set of instances
with a high proportion of yes instances and a high coverage of the yes instances:
You can increase the proportion by (conservatively) using a smaller coverage, or
(liberally) increase the coverage at the expense of the proportion. Different tech-
niques give different tradeoffs, and can be plotted as different lines on any of these
graphical charts.

People also seek single measures that characterize performance. Two that are
used in information retrieval are three-point average recall, which gives the average
precision obtained at recall values of 20%, 50%, and 80%, and 11-point average
recall, which gives the average precision obtained at recall values of 0%, 10%, 20%,
30%, 40%, 50%, 60%, 70%, 80%, 90%, and 100%. Also used in information
retrieval is the F-measure, which is

2 2
2

× ×
+

= ×
× + +

recall precision
recall precision

TP
TP FP FN

Different terms are used in different domains. Physicians, for example, talk about
the sensitivity and specificity of diagnostic tests. Sensitivity refers to the proportion

 5.7 Counting the Cost 175

176

Ta
bl

e
5.

7
D

iff
er

en
t

M
ea

su
re

s
U

se
d

to
 E

va
lu

at
e

Fa
ls

e
Po

si
tiv

e
ve

rs
us

 F
al

se
 N

eg
at

iv
e

Tr
ad

eo
ff

D
om

ai
n

P
lo

t
A

xe
s

E
xp

la
na

tio
n

of
 A

xe
s

Li
ft

ch
ar

t
M

ar
ke

tin
g

TP
 v

s.

su
bs

et
 s

iz
e

TP su
bs

et
 s

iz
e

nu
m

be
r

of
 t

ru
e

po
si

tiv
es

TP

FP
TP

FP
TN

FN
+

+
+

+
×

10
0%

R
O

C
 c

ur
ve

C
om

m
un

ic
at

io
ns

TP
 r

at
e

vs
.

FP
 r

at
e

TP
 r

at
e

FP
 r

at
e

tp
=

+
×

TP
TP

FN
10

0%

fp
=

+
×

FP
FP

TN
10

0%

R
ec

al
l–

pr
ec

is
io

n
cu

rv
e

In
fo

rm
at

io
n

re
tri

ev
al

R
ec

al
l v

s.

pr
ec

is
io

n
R

ec
al

l

pr
ec

is
io

n

sa
m

e
as

 T
P

 r
at

e
of

 t
p

ab
ov

e

TP
TP

FP
+

×
10

0%

of people with disease who have a positive test result—that is, tp. Specificity refers
to the proportion of people without disease who have a negative test result, which
is 1 – fp. Sometimes the product of these is used as an overall measure:

sensitivity specificity
TP TN

TP FN FP TN
× = − = ×

+ × +
tp fp()

() ()
1

Finally, of course, there is our old friend the success rate:

TP TN
TP FP TN FN

+
+ + +

To summarize ROC curves in a single quantity, people sometimes use the area
under the curve (AUC) because, roughly speaking, the larger the area the better the
model. The area also has a nice interpretation as the probability that the classifier
ranks a randomly chosen positive instance above a randomly chosen negative one.
Although such measures may be useful if costs and class distributions are unknown
and one scheme must be chosen to handle all situations, no single number is able to
capture the tradeoff. That can only be done by two-dimensional depictions such as
lift charts, ROC curves, and recall–precision diagrams.

Several methods are commonly employed for computing the area under the ROC
curve. One, corresponding to a geometric interpretation, is to approximate it by
fitting several trapezoids under the curve and summing up their area. Another is to
compute the probability that the classifier ranks a randomly chosen positive instance
above a randomly chosen negative one. This can be accomplished by calculating the
Mann–Whitney U statistic, or, more specifically, the ρ statistic from the U statistic.
This value is easily obtained from a list of test instances sorted in descending order
of predicted probability of the positive class. For each positive instance, count how
many negative ones are ranked below it (increase the count by 1

2 if positive and
negative instances tie in rank). The U statistic is simply the total of these counts.
The ρ statistic is obtained by dividing U by the product of the number of positive
and negative instances in the test set—in other words, the U value that would result
if all positive instances were ranked above the negative ones.

The area under the precision–recall curve (AUPRC) is an alternative summary
statistic that is preferred by some practitioners, particularly in the information
retrieval area.

Cost Curves
ROC curves and their relatives are very useful for exploring the tradeoffs among
different classifiers over a range of scenarios. However, they are not ideal for evalu-
ating machine learning models in situations with known error costs. For example,
it is not easy to read off the expected cost of a classifier for a fixed cost matrix and
class distribution. Neither can you easily determine the ranges of applicability of
different classifiers. For example, from the crossover point between the two ROC

 5.7 Counting the Cost 177

178 CHAPTER 5 Credibility: Evaluating What’s Been Learned

(a)
Probability, p [+]

E
xp

ec
te

d
E

rr
or

Always wrong

Always pick +

Always pick –

1

0.5

fn

fp
0

0 0.5

Always right

1
Probability Cost Function, pc [+]

(b)

0.5

0.25

0
0 0.5

fn

fp

1

A

A

B

N
or

m
al

iz
ed

 E
xp

ec
te

d
C

os
t

curves in Figure 5.4 it is hard to tell for what cost and class distributions classifier
A outperforms classifier B.

Cost curves are a different kind of display on which a single classifier corre-
sponds to a straight line that shows how the performance varies as the class distribu-
tion changes. Again, they work best in the two-class case, although you can always
make a multiclass problem into a two-class one by singling out one class and evalu-
ating it against the remaining ones.

Figure 5.5(a) plots the expected error against the probability of one of the classes.
You could imagine adjusting this probability by resampling the test set in a non-
uniform way. We denote the two classes by + and –. The diagonals show the per-
formance of two extreme classifiers: One always predicts +, giving an expected error
of 1 if the dataset contains no + instances and 0 if all its instances are +; the other
always predicts –, giving the opposite performance. The dashed horizontal line
shows the performance of the classifier that is always wrong, and the x-axis itself
represents the classifier that is always correct. In practice, of course, neither of these
is realizable. Good classifiers have low error rates, so where you want to be is as
close to the bottom of the diagram as possible.

The line marked A represents the error rate of a particular classifier. If you cal-
culate its performance on a certain test set, its false positive rate, fp, is its expected
error on a subsample of the test set that contains only examples that are negative
(p[+] = 0), and its false negative rate, fn, is the error on a subsample that contains
only positive examples, (p[+] = 1). These are the values of the intercepts at the left
and right, respectively. You can see immediately from the plot that if p[+] is smaller
than about 0.2, predictor A is outperformed by the extreme classifier that always
predicts –, while if it is larger than about 0.65, the other extreme classifier is better.

FIGURE 5.5

Effect of varying the probability threshold: (a) error curve and (b) cost curve.

So far we have not taken costs into account, or rather we have used the default
cost matrix in which all errors cost the same. Cost curves, which do take cost into
account, look very similar—very similar indeed—but the axes are different. Figure
5.5(b) shows a cost curve for the same classifier A (note that the vertical scale has
been enlarged, for convenience, and ignore the gray lines for now). It plots the
expected cost of using A against the probability cost function, which is a distorted
version of p[+] that retains the same extremes: 0 when p[+] = 0 and 1 when
p[+] = 1. Denote by C[+ | –] the cost of predicting + when the instance is actually
–, and the reverse by C[– | +]. Then the axes of Figure 5.5(b) are

Normalized expected cost = × + + × − +fn p fp pC C[] ([])1

Probability cost function p
p C

p C p C
C[]

[] [|]
[] [|] [] [

+ = + − +
+ − + + − ++ −|]

We are assuming here that correct predictions have no cost: C[+ | +] = C[– | –] = 0.
If that is not the case, the formulas are a little more complex.

The maximum value that the normalized expected cost can have is 1—that is
why it is “normalized.” One nice thing about cost curves is that the extreme cost
values at the left and right sides of the graph are fp and fn, just as they are for the
error curve, so you can draw the cost curve for any classifier very easily.

Figure 5.5(b) also shows classifier B, whose expected cost remains the same
across the range—that is, its false positive and false negative rates are equal. As you
can see, it outperforms classifier A if the probability cost function exceeds about
0.45, and knowing the costs we could easily work out what this corresponds to in
terms of class distribution. In situations that involve different class distributions,
cost curves make it easy to tell when one classifier will outperform another.

In what circumstances might this be useful? To return to our example of predict-
ing when cows will be in estrus, their 30-day cycle, or 1/30 prior probability, is
unlikely to vary greatly (barring a genetic cataclysm!). But a particular herd may
have different proportions of cows that are likely to reach estrus in any given week,
perhaps synchronized with—who knows?—the phase of the moon. Then, different
classifiers would be appropriate at different times. In the oil spill example, different
batches of data may have different spill probabilities. In these situations cost curves
can help to show which classifier to use when.

Each point on a lift chart, ROC curve, or recall–precision curve represents a
classifier, typically obtained by using different threshold values for a method such
as Naïve Bayes. Cost curves represent each classifier by a straight line, and a suite
of classifiers will sweep out a curved envelope whose lower limit shows how well
that type of classifier can do if the parameter is well chosen. Figure 5.5(b) indicates
this with a few gray lines. If the process were continued, it would sweep out the
dotted parabolic curve.

The operating region of classifier B ranges from a probability cost value of about
0.25 to a value of about 0.75. Outside this region, classifier B is outperformed by
the trivial classifiers represented by dashed lines. Suppose we decide to use classifier

 5.7 Counting the Cost 179

180 CHAPTER 5 Credibility: Evaluating What’s Been Learned

B within this range and the appropriate trivial classifier below and above it. All
points on the parabola are certainly better than this scheme. But how much better?
It is hard to answer such questions from an ROC curve, but the cost curve makes
them easy. The performance difference is negligible if the probability cost value is
around 0.5, and below a value of about 0.2 and above 0.8 it is barely perceptible.
The greatest difference occurs at probability cost values of 0.25 and 0.75 and is
about 0.04, or 4% of the maximum possible cost figure.

5.8 EVALUATING NUMERIC PREDICTION
All the evaluation measures we have described pertain to classification situations
rather than numeric prediction situations. The basic principles—using an indepen-
dent test set rather than the training set for performance evaluation, the holdout
method, cross-validation—apply equally well to numeric prediction. But the basic
quality measure offered by the error rate is no longer appropriate: Errors are not
simply present or absent; they come in different sizes.

Several alternative measures, some of which are summarized in Table 5.8, can be
used to evaluate the success of numeric prediction. The predicted values on the test
instances are p1, p2, …, pn; the actual values are a1, a2, …, an. Notice that pi means

Mean-squared error () ()p a p a
n

n n1 1
2 2− + … + −

Root mean-squared error () ()p a p a
n

n n1 1
2 2− + … + −

Mean-absolute error p a p a
n

n n1 1− + … + −

Relative-squared error* () ()
() ()
p a p a
a a a a

n n

n

1 1
2 2

1
2 2

− + … + −
− + … + −

Root relative-squared error* () ()
() ()
p a p a
a a a a

n n

n

1 1
2 2

1
2 2

− + … + −
− + … + −

Relative-absolute error* p a p a
a a a a

n n

n

1 1

1

− + … + −
− + … + −

Correlation coefficient**
S

S S
PA

P A

, where S
p p a a

nPA
i ii=
− −

−
∑ ()()

1
,

S
p p

nP
ii=
−

−
∑ ()2

1 , S
a a

nA
ii=
−

−
∑ ()2

1

*Here, a is the mean value over the training data.
**Here, a is the mean value over the test data.

Table 5.8 Performance Measures for Numeric Prediction

 5.8 Evaluating Numeric Prediction 181

something very different here from what it meant in the last section: There it was
the probability that a particular prediction was in the ith class; here it refers to the
numerical value of the prediction for the ith test instance.

Mean-squared error is the principal and most commonly used measure; some-
times the square root is taken to give it the same dimensions as the predicted value
itself. Many mathematical techniques (such as linear regression, explained in Chapter
4) use the mean-squared error because it tends to be the easiest measure to manipu-
late mathematically: It is, as mathematicians say, “well behaved.” However, here we
are considering it as a performance measure: All the performance measures are easy
to calculate, so mean-squared error has no particular advantage. The question is, is
it an appropriate measure for the task at hand?

Mean absolute error is an alternative: Just average the magnitude of the indi-
vidual errors without taking account of their sign. Mean-squared error tends to
exaggerate the effect of outliers—instances when the prediction error is larger than
the others—but absolute error does not have this effect: All sizes of error are treated
evenly according to their magnitude.

Sometimes it is the relative rather than absolute error values that are of impor-
tance. For example, if a 10% error is equally important whether it is an error of 50
in a prediction of 500 or an error of 0.2 in a prediction of 2, then averages of absolute
error will be meaningless—relative errors are appropriate. This effect would be taken
into account by using the relative errors in the mean-squared error calculation or the
mean absolute error calculation.

Relative squared error in Table 5.8 refers to something quite different. The error
is made relative to what it would have been if a simple predictor had been used. The
simple predictor in question is just the average of the actual values from the training
data, denoted by a. Thus, relative squared error takes the total squared error and
normalizes it by dividing by the total squared error of the default predictor. The root
relative squared error is obtained in the obvious way.

The next error measure goes by the glorious name of relative absolute error and
is just the total absolute error, with the same kind of normalization. In these three
relative error measures, the errors are normalized by the error of the simple predictor
that predicts average values.

The final measure in Table 5.8 is the correlation coefficient, which measures the
statistical correlation between the a’s and the p’s. The correlation coefficient ranges
from 1 for perfectly correlated results, through 0 when there is no correlation, to –1
when the results are perfectly correlated negatively. Of course, negative values
should not occur for reasonable prediction methods. Correlation is slightly different
from the other measures because it is scale independent in that, if you take a particu-
lar set of predictions, the error is unchanged if all the predictions are multiplied by
a constant factor and the actual values are left unchanged. This factor appears in
every term of SPA in the numerator and in every term of SP in the denominator, thus
canceling out. (This is not true for the relative error figures, despite normalization:
If you multiply all the predictions by a large constant, then the difference between
the predicted and actual values will change dramatically, as will the percentage

182 CHAPTER 5 Credibility: Evaluating What’s Been Learned

Table 5.9 Performance Measures for Four Numeric Prediction Models

A B C D

Root mean-squared error 67.8 91.7 63.3 57.4
Mean absolute error 41.3 38.5 33.4 29.2
Root relative squared error 42.2% 57.2% 39.4% 35.8%
Relative absolute error 43.1% 40.1% 34.8% 30.4%
Correlation coefficient 0.88 0.88 0.89 0.91

errors.) It is also different in that good performance leads to a large value of the
correlation coefficient, whereas because the other methods measure error, good
performance is indicated by small values.

Which of these measures is appropriate in any given situation is a matter
that can only be determined by studying the application itself. What are we
trying to minimize? What is the cost of different kinds of error? Often it is not
easy to decide. The squared error measures and root-squared error measures
weigh large discrepancies much more heavily than small ones, whereas the abso-
lute error measures do not. Taking the square root (root mean-squared error) just
reduces the figure to have the same dimensionality as the quantity being predicted.
The relative error figures try to compensate for the basic predictability or unpre-
dictability of the output variable: If it tends to lie fairly close to its average
value, then you expect prediction to be good and the relative figure compensates
for this. Otherwise, if the error figure in one situation is far greater than in
another situation, it may be because the quantity in the first situation is inher-
ently more variable and therefore harder to predict, not because the predictor is
any worse.

Fortunately, it turns out that in most practical situations the best numerical
prediction method is still the best no matter which error measure is used. For
example, Table 5.9 shows the result of four different numeric prediction techniques
on a given dataset, measured using cross-validation. Method D is the best accord-
ing to all five metrics: It has the smallest value for each error measure and the
largest correlation coefficient. Method C is the second best by all five metrics.
The performance of A and B is open to dispute: They have the same correlation
coefficient; A is better than B according to mean-squared and relative squared
errors, and the reverse is true for absolute and relative absolute error. It is likely
that the extra emphasis that the squaring operation gives to outliers accounts for
the differences in this case.

When comparing two different learning schemes that involve numeric prediction,
the methodology developed in Section 5.5 still applies. The only difference is that
success rate is replaced by the appropriate performance measure (e.g., root mean-
squared error) when performing the significance test.

 5.9 Minimum Description Length Principle 183

5.9 MINIMUM DESCRIPTION LENGTH PRINCIPLE
What is learned by a machine learning scheme is a kind of “theory” of the domain
from which the examples are drawn, a theory that is predictive in that it is capable
of generating new facts about the domain—in other words, the class of unseen
instances. Theory is rather a grandiose term: We are using it here only in the sense
of a predictive model. Thus, theories might comprise decision trees or sets of
rules—they don’t have to be any more “theoretical” than that.

There is a long-standing tradition in science that, other things being equal,
simple theories are preferable to complex ones. This is known as Occam’s Razor
after the medieval philosopher William of Occam (or Ockham). Occam’s Razor
shaves philosophical hairs off a theory. The idea is that the best scientific theory
is the smallest one that explains all the facts. As Einstein is reputed to have said,
“Everything should be made as simple as possible, but no simpler.” Of course,
quite a lot is hidden in the phrase “other things being equal,” and it can be hard
to assess objectively whether a particular theory really does “explain” all the facts
on which it is based—that’s what controversy in science is all about.

In our case, in machine learning, most theories make errors. And if what is
learned is a theory, then the errors it makes are like exceptions to the theory. One
way to ensure that other things are equal is to insist that the information embodied
in the exceptions is included as part of the theory when its “simplicity” is judged.

Imagine an imperfect theory for which there are a few exceptions. Not all the
data is explained by the theory, but most is. What we do is simply adjoin the
exceptions to the theory, specifying them explicitly as exceptions. This new theory
is larger: That is a price that, quite justifiably, has to be paid for its inability to
explain all the data. However, it may be that the simplicity—is it too much to call
it elegance?—of the original theory is sufficient to outweigh the fact that it does
not quite explain everything compared with a large, baroque theory that is more
comprehensive and accurate.

For example, even though Kepler’s three laws of planetary motion did not at the
time account for the known data quite so well as Copernicus’ latest refinement of
the Ptolemaic theory of epicycles, they had the advantage of being far less complex,
and that would have justified any slight apparent inaccuracy. Kepler was well aware
of the benefits of having a theory that was compact, despite the fact that his theory
violated his own aesthetic sense because it depended on “ovals” rather than pure
circular motion. He expressed this in a forceful metaphor: “I have cleared the Augean
stables of astronomy of cycles and spirals, and left behind me only a single cartload
of dung.”

The minimum description length, or MDL, principle takes the stance that the best
theory for a body of data is one that minimizes the size of the theory plus the amount
of information necessary to specify the exceptions relative to the theory—the small-
est “cartload of dung.” In statistical estimation theory, this has been applied success-
fully to various parameter-fitting problems. It applies to machine learning as follows:
Given a set of instances, a learning scheme infers a theory—be it ever so simple;

184 CHAPTER 5 Credibility: Evaluating What’s Been Learned

unworthy, perhaps, to be called a “theory”—from them. Using a metaphor of com-
munication, imagine that the instances are to be transmitted through a noiseless
channel. Any similarity that is detected among them can be exploited to give a more
compact coding. According to the MDL principle, the best theory is the one that
minimizes the number of bits required to communicate the theory, along with the
labels of the examples from which it was made.

Now the connection with the informational loss function introduced in Section
5.6 should be starting to emerge. That function measures the error in terms of the
number of bits required to transmit the instances’ class labels, given the probabi-
listic predictions made by the theory. According to the MDL principle, we need
to add to this the “size” of the theory in bits, suitably encoded, to obtain an overall
figure for complexity. However, the MDL principle refers to the information required
to transmit the examples from which the theory was formed—that is, the training
instances, not a test set. The overfitting problem is avoided because a complex
theory that overfits will be penalized relative to a simple one by virtue of the fact
that it takes more bits to encode. At one extreme is a very complex, highly over-
fitted theory that makes no errors on the training set. At the other is a very simple
theory—the null theory—which does not help at all when transmitting the training
set. And in between are theories of intermediate complexity, which make proba-
bilistic predictions that are imperfect and need to be corrected by transmitting
some information about the training set. The MDL principle provides a means of
comparing all these possibilities on an equal footing to see which is the best. We
have found the holy grail: an evaluation scheme that works on the training set
alone and does not need a separate test set. But the devil is in the details, as we
will see.

Suppose a learning scheme comes up with a theory T, based on a training
set E of examples, that requires a certain number of bits L[T] to encode, where
L is for length. We are only interested in predicting class labels correctly, so we
assume that E stands for the collection of class labels in the training set. Given
the theory, the training set itself can be encoded in a certain number of
bits, L[E | T]. L[E | T] is in fact given by the informational loss function summed
over all members of the training set. Then the total description length of theory
plus training set is

L L[] [|]T E T+

and the MDL principle recommends choosing the theory T that minimizes this sum.
There is a remarkable connection between the MDL principle and basic probabil-

ity theory. Given a training set E, we seek the “most likely” theory T—that is,
the theory for which the a posteriori probability Pr[T | E]—the probability after the
examples have been seen—is maximized. Bayes’ rule of conditional probability
(the very same rule that we encountered in Section 4.2) dictates that

Pr[|]
Pr[|]Pr[]

Pr[]
T E

E T T
E

=

 5.9 Minimum Description Length Principle 185

Taking negative logarithms,

− = − − +log Pr[|] log Pr[|] log Pr[] log Pr[]T E E T T E

Maximizing the probability is the same as minimizing its negative logarithm.
Now (as we saw in Section 5.6) the number of bits required to code something is just
the negative logarithm of its probability. Furthermore, the final term, log Pr[E],
depends solely on the training set and not on the learning method. Thus, choosing the
theory that maximizes the probability Pr[T | E] is tantamount to choosing the theory
that minimizes

L L[|] []E T T+

In other words, the MDL principle!
This astonishing correspondence with the notion of maximizing the a posteriori

probability of a theory after the training set has been taken into account gives cre-
dence to the MDL principle. But it also points out where the problems will sprout
when the principle is applied in practice. The difficulty with applying Bayes’ rule
directly is in finding a suitable prior probability distribution Pr[T] for the theory. In
the MDL formulation, that translates into finding how to code the theory T into bits
in the most efficient way. There are many ways of coding things, and they all depend
on presuppositions that must be shared by encoder and decoder. If you know in
advance that the theory is going to take a certain form, you can use that information
to encode it more efficiently. How are you going to actually encode T? The devil is
in the details.

Encoding E with respect to T to obtain L[E | T] seems a little more straightfor-
ward: We have already met the informational loss function. But actually, when you
encode one member of the training set after another, you are encoding a sequence
rather than a set. It is not necessary to transmit the training set in any particular
order, and it ought to be possible to use that fact to reduce the number of bits
required. Often, this is simply approximated by subtracting log n! (where n is the
number of elements in E), which is the number of bits needed to specify a particular
permutation of the training set (and because this is the same for all theories, it doesn’t
actually affect the comparison between them). But one can imagine using the fre-
quency of the individual errors to reduce the number of bits needed to code them.
Of course, the more sophisticated the method that is used to code the errors, the less
the need for a theory in the first place—so whether a theory is justified or not depends
to some extent on how the errors are coded. The details, the details.

We end this section as we began, on a philosophical note. It is important to
appreciate that Occam’s Razor, the preference of simple theories over complex ones,
has the status of a philosophical position or “axiom” rather than something that can
be proven from first principles. While it may seem self-evident to us, this is a func-
tion of our education and the times we live in. A preference for simplicity is—or
may be—culture specific rather than absolute.

186 CHAPTER 5 Credibility: Evaluating What’s Been Learned

The Greek philosopher Epicurus (who enjoyed good food and wine and suppos-
edly advocated sensual pleasure—in moderation—as the highest good) expressed
almost the opposite sentiment. His principle of multiple explanations advises that “If
more than one theory is consistent with the data, keep them all” on the basis that if
several explanations are equally in agreement, it may be possible to achieve a higher
degree of precision by using them together—and, anyway, it would be unscientific to
discard some arbitrarily. This brings to mind instance-based learning, in which all the
evidence is retained to provide robust predictions, and resonates strongly with deci-
sion combination methods such as bagging and boosting (described in Chapter 8)
that actually do gain predictive power by using multiple explanations together.

5.10 APPLYING THE MDL PRINCIPLE TO CLUSTERING
One of the nice things about the minimum description length principle is that, unlike
other evaluation criteria, it can be applied under widely different circumstances.
Although in some sense equivalent to Bayes’ rule in that, as we have seen, devising
a coding scheme for theories is tantamount to assigning them a prior probability
distribution, schemes for coding are somehow far more tangible and easier to think
about in concrete terms than intuitive prior probabilities. To illustrate this we will
briefly describe—without entering into coding details—how you might go about
applying the MDL principle to clustering.

Clustering seems intrinsically difficult to evaluate. Whereas classification or
association learning has an objective criterion of success—predictions made on test
cases are either right or wrong—this is not so with clustering. It seems that the only
realistic evaluation is whether the result of learning—the clustering—proves useful
in the application context. (It is worth pointing out that really this is the case for all
types of learning, not just clustering.)

Despite this, clustering can be evaluated from a description-length perspective.
Suppose a cluster-learning technique divides the training set E into k clusters. If
these clusters are natural ones, it should be possible to use them to encode E more
efficiently. The best clustering will support the most efficient encoding.

One way of encoding the instances in E with respect to a given clustering is to
start by encoding the cluster centers—the average value of each attribute over all
instances in the cluster. Then, for each instance in E, transmit which cluster it belongs
to (in log2 k bits) followed by its attribute values with respect to the cluster center—
perhaps as the numeric difference of each attribute value from the center. Couched
as it is in terms of averages and differences, this description presupposes numeric
attributes and raises thorny questions of how to code numbers efficiently. Nominal
attributes can be handled in a similar manner: For each cluster there is a probability
distribution for the attribute values, and the distributions are different for different
clusters. The coding issue becomes more straightforward: Attribute values are coded
with respect to the relevant probability distribution, a standard operation in data
compression.

 5.11 Further Reading 187

If the data exhibits extremely strong clustering, this technique will result in a
smaller description length than simply transmitting the elements of E without any
clusters. However, if the clustering effect is not so strong, it will likely increase
rather than decrease the description length. The overhead of transmitting cluster-
specific distributions for attribute values will more than offset the advantage gained
by encoding each training instance relative to the cluster it lies in. This is where
more sophisticated coding techniques come in. Once the cluster centers have been
communicated, it is possible to transmit cluster-specific probability distributions
adaptively, in tandem with the relevant instances: The instances themselves help to
define the probability distributions, and the probability distributions help to define
the instances. We will not venture further into coding techniques here. The point is
that the MDL formulation, properly applied, may be flexible enough to support the
evaluation of clustering. But actually doing it satisfactorily in practice is not easy.

5.11 FURTHER READING
The statistical basis of confidence tests is well covered in most statistics texts, which
also give tables of the normal distribution and Student’s distribution. (We use an
excellent course text by Wild and Seber (1995) that we recommend very strongly if
you can get hold of it.) “Student” is the nom de plume of a statistician called William
Gosset, who obtained a post as a chemist in the Guinness brewery in Dublin, Ireland,
in 1899 and invented the t-test to handle small samples for quality control in
brewing. The corrected resampled t-test was proposed by Nadeau and Bengio (2003).
Cross-validation is a standard statistical technique, and its application in machine
learning has been extensively investigated and compared with the bootstrap by
Kohavi (1995a). The bootstrap technique itself is thoroughly covered by Efron and
Tibshirani (1993).

The Kappa statistic was introduced by Cohen (1960). Ting (2002) has investi-
gated a heuristic way of generalizing to the multiclass case the algorithm given in
Section 5.7 to make two-class learning schemes cost sensitive. Lift charts are
described by Berry and Linoff (1997). The use of ROC analysis in signal detection
theory is covered by Egan (1975); this work has been extended for visualizing and
analyzing the behavior of diagnostic systems (Swets, 1988) and is also used in
medicine (Beck and Schultz, 1986). Provost and Fawcett (1997) brought the idea of
ROC analysis to the attention of the machine learning and data mining community.
Witten et al. (1999b) explain the use of recall and precision in information retrieval
systems; the F-measure is described by van Rijsbergen (1979). Drummond and Holte
(2000) introduced cost curves and investigated their properties.

The MDL principle was formulated by Rissanen (1985). Kepler’s discovery of
his economical three laws of planetary motion, and his doubts about them, are
recounted by Koestler (1964).

Epicurus’ principle of multiple explanations is mentioned by Li and Vityani
(1992), quoting from Asmis (1984).

This page intentionally left blank

	Front cover
	Data Mining: Practical Machine Learning Tools and Techniques
	Copyright page
	Table of contents
	List of Figures
	List of Tables
	Preface
	Updated and revised content

	Acknowledgments
	About the Authors
	PART I: Introduction to Data Mining
	Chapter 1: What’s It All About?
	Data mining and machine learning
	Simple examples: the weather and other problems
	Fielded applications
	Machine learning and statistics
	Generalization as search
	Data mining and ethics
	Further reading

	Chapter 2: Input: Concepts, Instances, and Attributes
	What’s a concept?
	What’s in an example?
	What’s in an attribute?
	Preparing the input
	Further reading

	Chapter 3: Output: Knowledge Representation
	Tables
	Linear models
	Trees
	Rules
	Instance-based representation
	Clusters
	Further reading

	Chapter 4: Algorithms: The Basic Methods
	InFerring rudimentary rules
	Statistical modeling
	Divide-and-conquer: constructing decision trees
	Covering algorithms: constructing rules
	Mining association rules
	Linear models
	Instance-based learning
	Clustering
	Multi-instance learning
	Further reading
	Weka implementations

	Chapter 5: Credibility: Evaluating What’s Been Learned
	Training and testing
	Predicting performance
	Cross-validation
	Other estimates
	Comparing data mining schemes
	Predicting probabilities
	Counting the cost
	Evaluating numeric prediction
	Minimum description length principle
	Applying the MDL principle to clustering
	Further reading

	Part 2: Advanced Data Mining
	Chapter 6: Implementations: Real Machine Learning Schemes
	Decision trees
	Classification rules
	Association rules
	Extending linear models
	Instance-based learning
	Numeric prediction with local linear models
	Bayesian networks
	Clustering
	Semisupervised learning
	Multi-instance learning
	Weka implementations

	Chapter 7: Data Transformations
	Attribute selection
	Discretizing numeric attributes
	Projections
	Sampling
	Cleansing
	Transforming multiple classes to binary ones
	Calibrating class probabilities
	Further reading
	Weka implementations

	Chapter 8: Ensemble Learning
	Combining multiple models
	Bagging
	Randomization
	Boosting
	Additive regression
	Interpretable ensembles
	Stacking
	Further reading
	Weka implementations

	Chapter 9: Moving on: Applications and Beyond
	Applying data mining
	Learning from massive datasets
	Data stream learning
	Incorporating domain knowledge
	Text mining
	Web mining
	Adversarial situations
	Ubiquitous data mining
	Further reading

	PART III: The Weka Data Mining Workbench
	Chapter 10: Introduction to Weka
	What’s in weka?
	How do you use it?
	What else can you do?
	How do you get it?

	Chapter 11: The Explorer
	Getting started
	Exploring the explorer
	Filtering algorithms
	Learning algorithms
	Metalearning algorithms
	Clustering algorithms
	Association-rule learners
	Attribute selection

	Chapter 12: The Knowledge Flow Interface
	Getting started
	Components
	Configuring and connecting the components
	Incremental learning

	Chapter 13: The Experimenter
	Getting started
	Simple setup
	Advanced setup
	The analyze panel
	Distributing processing over several machines

	Chapter 14: The Command-Line Interface
	Getting started
	The structure of weka
	Command-line options

	Chapter 15: Embedded Machine Learning
	A simple data mining application

	Chapter 16: Writing New Learning Schemes
	An example classifier
	Conventions for implementing classifiers

	Chapter 17: Tutorial Exercises for the Weka Explorer
	Introduction to the explorer interface
	Nearest-neighbor learning and decision trees
	Classification boundaries
	Preprocessing and parameter tuning
	Document classification
	Mining association rules

	References
	Index

