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CHAPTER

5Credibility: Evaluating  
What’s Been Learned

Evaluation is the key to making real progress in data mining. There are lots of ways 
of inferring structure from data: We have encountered many already and will see 
further refinements, and new methods, in Chapter 6. However, in order to determine 
which ones to use on a particular problem we need systematic ways to evaluate how 
different methods work and to compare one with another. But evaluation is not as 
simple as it might appear at first sight.

What’s the problem? We have the training set; surely we can just look at how 
well different methods do on that. Well, no: As we will see very shortly, performance 
on the training set is definitely not a good indicator of performance on an indepen-
dent test set. We need ways of predicting performance bounds in practice, based on 
experiments with whatever data can be obtained.

When a vast supply of data is available, this is no problem: Just make a model 
based on a large training set, and try it out on another large test set. But although 
data mining sometimes involves “big data”—particularly in marketing, sales, and 
customer support applications—it is often the case that data, quality data, is scarce. 
The oil slicks mentioned in Chapter 1 (page 23) had to be detected and marked 
manually—a skilled and labor-intensive process—before being used as training 
data. Even in the personal loan application data (page 22), there turned out to be 
only 1000 training examples of the appropriate type. The electricity supply data 
(page 24) went back 15 years, 5000 days—but only 15 Christmas days and Thanks-
givings, and just four February 29s and presidential elections. The electromechanical 
diagnosis application (page 25) was able to capitalize on 20 years of recorded 
experience, but this yielded only 300 usable examples of faults. The marketing 
and sales applications (page 26) certainly involve big data, but many others do 
not: Training data frequently relies on specialist human expertise—and that is 
always in short supply.

The question of predicting performance based on limited data is an interesting, 
and still controversial, one. We will encounter many different techniques, of which 
one—repeated cross-validation—is probably the method of choice in most practical 
limited-data situations. Comparing the performance of different machine learning 
schemes on a given problem is another matter that is not as easy as it sounds: To be 
sure that apparent differences are not caused by chance effects, statistical tests are 
needed.
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So far we have tacitly assumed that what is being predicted is the ability to clas-
sify test instances accurately; however, some situations involve predicting class 
probabilities rather than the classes themselves, and others involve predicting 
numeric rather than nominal values. Different methods are needed in each case. Then 
we look at the question of cost. In most practical data mining situations, the cost of 
a misclassification error depends on the type of error it is—whether, for example, a 
positive example was erroneously classified as negative or vice versa. When doing 
data mining, and evaluating its performance, it is often essential to take these costs 
into account. Fortunately, there are simple techniques to make most learning schemes 
cost sensitive without grappling with the algorithm’s internals. Finally, the whole 
notion of evaluation has fascinating philosophical connections. For 2000 years, 
philosophers have debated the question of how to evaluate scientific theories, and 
the issues are brought into sharp focus by data mining because what is extracted is 
essentially a “theory” of the data.

5.1 TRAINING AND TESTING
For classification problems, it is natural to measure a classifier’s performance in 
terms of the error rate. The classifier predicts the class of each instance: If it is 
correct, that is counted as a success; if not, it is an error. The error rate is just the 
proportion of errors made over a whole set of instances, and it measures the overall 
performance of the classifier.

Of course, what we are interested in is the likely future performance on new data, 
not the past performance on old data. We already know the classifications of each 
instance in the training set, which after all is why we can use it for training. We are 
not generally interested in learning about those classifications—although we might 
be if our purpose is data cleansing rather than prediction. So the question is, is the 
error rate on old data likely to be a good indicator of the error rate on new data? 
The answer is a resounding no—not if the old data was used during the learning 
process to train the classifier.

This is a surprising fact, and a very important one. The error rate on the training 
set is not likely to be a good indicator of future performance. Why? Because the 
classifier has been learned from the very same training data, any estimate of perfor-
mance based on that data will be optimistic, even hopelessly optimistic.

We have already seen an example of this in the labor relations dataset. Figure 
1.3(b) (page 18) was generated directly from the training data, and Figure 1.3(a) 
was obtained from it by a process of pruning. The former is potentially more accurate 
on the data that was used to train the classifier, but may perform less well on inde-
pendent test data because it is overfitted to the training data. The first tree will look 
good according to the error rate on the training data, better than the second tree. But 
this does not necessarily reflect how they will perform on independent test data.

The error rate on the training data is called the resubstitution error because it is 
calculated by resubstituting the training instances into a classifier that was 
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constructed from them. Although it is not a reliable predictor of the true error rate 
on new data, it is nevertheless often useful to know.

To predict the performance of a classifier on new data, we need to assess its error 
rate on a dataset that played no part in the formation of the classifier. This indepen-
dent dataset is called the test set. We assume that both the training data and the test 
data are representative samples of the underlying problem.

In some cases the test data might be distinct in nature from the training data. 
Consider, for example, the credit risk problem from Section 1.3 (page 22). Suppose 
the bank had training data from branches in New York and Florida and wanted to 
know how well a classifier trained on one of these datasets would perform in a 
new branch in Nebraska. It should probably use the Florida data as test data for 
evaluating the New York–trained classifier and the New York data to evaluate the 
Florida-trained classifier. If the datasets were amalgamated before training, perfor-
mance on the test data would probably not be a good indicator of performance on 
future data in a completely different state.

It is important that the test data is not used in any way to create the classifier. 
For example, some learning schemes involve two stages, one to come up with a 
basic structure and the second to optimize parameters involved in that structure, and 
separate sets of data may be needed in the two stages. Or you might try out several 
learning schemes on the training data and then evaluate them—on a fresh dataset, 
of course—to see which one works best. But none of this data may be used to 
determine an estimate of the future error rate.

In such situations people often talk about three datasets: the training data, the 
validation data, and the test data. The training data is used by one or more learning 
schemes to come up with classifiers. The validation data is used to optimize param-
eters of those classifier, or to select a particular one. Then the test data is used to 
calculate the error rate of the final, optimized, method. Each of the three sets must 
be chosen independently: The validation set must be different from the training set 
to obtain good performance in the optimization or selection stage, and the test set 
must be different from both to obtain a reliable estimate of the true error rate.

It may be that once the error rate has been determined, the test data is bundled 
back into the training data to produce a new classifier for actual use. There is nothing 
wrong with this: It is just a way of maximizing the amount of data used to generate 
the classifier that will actually be employed in practice. With well-behaved learning 
schemes, this should not decrease predictive performance. Also, once the validation 
data has been used—maybe to determine the best type of learning scheme to use—
then it can be bundled back into the training data to retrain that learning scheme, 
maximizing the use of data.

If lots of data is available, there is no problem: We take a large sample and use 
it for training; then another, independent large sample of different data and use it 
for testing. Provided both samples are representative, the error rate on the test set 
will give a good indication of future performance. Generally, the larger the training 
sample, the better the classifier, although the returns begin to diminish once a certain 
volume of training data is exceeded. And the larger the test sample, the more accurate 
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the error estimate. The accuracy of the error estimate can be quantified statistically, 
as we will see in Section 5.2.

The real problem occurs when there is not a vast supply of data available. In 
many situations the training data must be classified manually—and so must the test 
data, of course, to obtain error estimates. This limits the amount of data that can be 
used for training, validation, and testing, and the problem becomes how to make the 
most of a limited dataset. From this dataset, a certain amount is held over for 
testing—this is called the holdout procedure—and the remainder used for training 
(and, if necessary, part of that is set aside for validation). There’s a dilemma here: 
To find a good classifier, we want to use as much of the data as possible for training; 
to obtain a good error estimate, we want to use as much of it as possible for testing. 
Sections 5.3 and 5.4 review widely used methods for dealing with this dilemma.

5.2 PREDICTING PERFORMANCE
Suppose we measure the error of a classifier on a test set and obtain a certain numeri-
cal error rate—say 25%. Actually, in this section we talk about success rate rather 
than error rate, so this corresponds to a success rate of 75%. Now, this is only an 
estimate. What can you say about the true success rate on the target population? 
Sure, it’s expected to be close to 75%. But how close—within 5 or 10%? It must 
depend on the size of the test set. Naturally, we would be more confident of the 75% 
figure if it were based on a test set of 10,000 instances rather than a test set of 100 
instances. But how much more confident would we be?

To answer these questions, we need some statistical reasoning. In statistics, a 
succession of independent events that either succeed or fail is called a Bernoulli 
process. The classic example is coin tossing. Each toss is an independent event. Let’s 
say we always predict heads; but rather than “heads” or “tails,” each toss is consid-
ered a “success” or a “failure.” Let’s say the coin is biased, but we don’t know what 
the probability of heads is. Then, if we actually toss the coin 100 times and 75 of 
the tosses are heads, we have a situation very like the one just described for a clas-
sifier with an observed 75% success rate on a test set. What can we say about the 
true success probability? In other words, imagine that there is a Bernoulli process—a 
biased coin—with a true (but unknown) success rate of p. Suppose that out of N 
trials, S are successes; thus, the observed success rate is f = S/N. The question is, 
what does this tell you about the true success rate p?

The answer to this question is usually expressed as a confidence interval—that 
is, p lies within a certain specified interval with a certain specified confidence. For 
example, if S = 750 successes are observed out of N = 1000 trials, this indicates that 
the true success rate must be around 75%. But how close to 75%? It turns out that 
with 80% confidence, the true success rate p lies between 73.2% and 76.7%. If 
S = 75 successes are observed out of N = 100 trials, this also indicates that the true 
success rate must be around 75%. But the experiment is smaller, and so the 80% 
confidence interval for p is wider, stretching from 69.1 to 80.1%.



 5.2 Predicting Performance 151

These figures are easy to relate to qualitatively, but how are they derived quantitatively? 
We reason as follows: The mean and variance of a single Bernoulli trial with success rate 
p are p and p(1 − p), respectively. If N trials are taken from a Bernoulli process, the 
expected success rate f = S/N is a random variable with the same mean p; the variance is 
reduced by a factor of N to p(1 − p)/N. For large N, the distribution of this random 
variable approaches the normal distribution. These are all facts of statistics—we will not 
go into how they are derived.

The probability that a random variable X, with zero mean, lies within a certain 
confidence range of width 2z is

Pr − ≤ ≤[ ] =z X z c

For a normal distribution, values of c and corresponding values of z are given in tables 
printed at the back of most statistical texts. However, the tabulations conventionally take 
a slightly different form: They give the confidence that X will lie outside the range, and 
they give it for the upper part of the range only:

Pr X z≥[ ]
This is called a one-tailed probability because it refers only to the upper “tail” of the 
distribution. Normal distributions are symmetric, so the probabilities for the lower tail

Pr X z≤ −[ ]
are just the same.

Table 5.1 gives an example. Like other tables for the normal distribution, this 
assumes that the random variable X has a mean of 0 and a variance of  1. Alternatively, 
you might say that the z figures are measured in standard deviations from the mean. 
Thus, the figure for Pr[X ≥ z] = 5% implies that there is a 5% chance that X lies more 
than 1.65 standard deviations above the mean. Because the distribution is symmetric, 
the chance that X lies more than 1.65 standard deviations from the mean (above or 
below) is 10%, or

Pr . . %− ≤ ≤[ ] =1 65 1 65 90X

Now all we need to do is reduce the random variable f to have zero mean and unit 
variance. We do this by subtracting the mean p and dividing by the standard 
deviation p p N( )1 − . This leads to
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Here is the procedure for finding confidence limits. Given a particular confidence figure 
c, consult Table 5.1 for the corresponding z value. To use the table you will first have to 
subtract c from 1 and then halve the result, so that for c = 90% you use the table entry 
for 5%. Linear interpolation can be used for intermediate confidence levels. Then write 
the inequality in the preceding expression as an equality and invert it to find an 
expression for p.

The final step involves solving a quadratic equation. Although this is not hard to do, it 
leads to an unpleasantly formidable expression for the confidence limits:
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The ± in this expression gives two values for p that represent the upper and lower confidence 
boundaries. Although the formula looks complicated, it is not hard to work out in particular 
cases.
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This result can be used to obtain the values in the numeric example given earlier. 
Setting f = 75%, N = 1000, and c = 80% (so that z = 1.28) leads to the interval [0.732, 
0.767] for p, and N = 100 leads to [0.691, 0.801] for the same level of confidence. 
Note that the normal distribution assumption is only valid for large N (say, N > 100). 
Thus, f = 75% and N = 10 leads to confidence limits [0.549, 0.881], but these should 
be taken with a grain of salt.

Table 5.1 Confidence Limits for the Normal Distribution

Pr[X ≥ z] z

0.1% 3.09
0.5% 2.58
1% 2.33
5% 1.65

10% 1.28
20% 0.84
40% 0.25

5.3 CROSS-VALIDATION
Now consider what to do when the amount of data for training and testing is limited. 
The holdout method reserves a certain amount for testing and uses the remainder 
for training (and sets part of that aside for validation, if required). In practical terms, 
it is common to hold out one-third of the data for testing and use the remaining 
two-thirds for training.

Of course, you may be unlucky: The sample used for training (or testing) might 
not be representative. In general, you cannot tell whether a sample is representative 
or not. But there is one simple check that might be worthwhile: Each class in the 
full dataset should be represented in about the right proportion in the training and 
testing sets. If, by bad luck, all examples with a certain class were omitted from 
the training set, you could hardly expect a classifier learned from that data to perform 
well on examples of that class—and the situation would be exacerbated by the fact 
that the class would necessarily be overrepresented in the test set because none of 
its instances made it into the training set! Instead, you should ensure that the random 
sampling is done in a way that guarantees that each class is properly represented 
in both training and test sets. This procedure is called stratification, and we might 
speak of stratified holdout. While it is generally well worth doing, stratification 
provides only a primitive safeguard against uneven representation in training and 
test sets.

A more general way to mitigate any bias caused by the particular sample chosen 
for holdout is to repeat the whole process, training and testing, several times with 
different random samples. In each iteration a certain proportion, say two-thirds, of 
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the data is randomly selected for training, possibly with stratification, and the 
remainder is used for testing. The error rates on the different iterations are averaged 
to yield an overall error rate. This is the repeated holdout method of error rate 
estimation.

In a single holdout procedure, you might consider swapping the roles of the 
testing and training data—that is, train the system on the test data and test it on 
the training data—and average the two results, thus reducing the effect of uneven 
representation in training and test sets. Unfortunately, this is only really plausible 
with a 50:50 split between training and test data, which is generally not ideal—it 
is better to use more than half the data for training even at the expense of test data. 
However, a simple variant forms the basis of an important statistical technique 
called cross-validation. In cross-validation, you decide on a fixed number of folds, 
or partitions, of the data. Suppose we use three. Then the data is split into three 
approximately equal partitions; each in turn is used for testing and the remainder 
is used for training. That is, use two-thirds of the data for training and one-third 
for testing, and repeat the procedure three times so that in the end, every instance 
has been used exactly once for testing. This is called threefold cross-validation, 
and if stratification is adopted as well—which it often is—it is stratified threefold 
cross-validation.

The standard way of predicting the error rate of a learning technique given a 
single, fixed sample of data is to use stratified tenfold cross-validation. The data is 
divided randomly into 10 parts in which the class is represented in approximately 
the same proportions as in the full dataset. Each part is held out in turn and the 
learning scheme trained on the remaining nine-tenths; then its error rate is calculated 
on the holdout set. Thus, the learning procedure is executed a total of 10 times on 
different training sets (each set has a lot in common with the others). Finally, the 10 
error estimates are averaged to yield an overall error estimate.

Why 10? Extensive tests on numerous different datasets, with different learning 
techniques, have shown that 10 is about the right number of folds to get the best 
estimate of error, and there is also some theoretical evidence that backs this up. 
Although these arguments are by no means conclusive, and debate continues to 
rage in machine learning and data mining circles about what is the best scheme 
for evaluation, tenfold cross-validation has become the standard method in practi-
cal terms. Tests have also shown that the use of stratification improves results 
slightly. Thus, the standard evaluation technique in situations where only limited 
data is available is stratified tenfold cross-validation. Note that neither the strati-
fication nor the division into 10 folds has to be exact: It is enough to divide the 
data into 10 approximately equal sets in which the various class values are rep-
resented in approximately the right proportion. Moreover, there is nothing magic 
about the exact number 10: 5-fold or 20-fold cross-validation is likely to be almost 
as good.

A single tenfold cross-validation might not be enough to get a reliable error 
estimate. Different tenfold cross-validation experiments with the same learning 
scheme and dataset often produce different results because of the effect of random 
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variation in choosing the folds themselves. Stratification reduces the variation, but 
it certainly does not eliminate it entirely. When seeking an accurate error estimate, 
it is standard procedure to repeat the cross-validation process 10 times—that is, 10 
times tenfold cross-validation—and average the results. This involves invoking the 
learning algorithm 100 times on datasets that are all nine-tenths the size of the 
original. Getting a good measure of performance is a computation-intensive 
undertaking.

5.4 OTHER ESTIMATES
Tenfold cross-validation is the standard way of measuring the error rate of a learning 
scheme on a particular dataset; for reliable results, 10 times tenfold cross-validation. 
But many other methods are used instead. Two that are particularly prevalent are 
leave-one-out cross-validation and the bootstrap.

Leave-One-Out Cross-Validation
Leave-one-out cross-validation is simply n-fold cross-validation, where n is the 
number of instances in the dataset. Each instance in turn is left out, and the learning 
scheme is trained on all the remaining instances. It is judged by its correctness on 
the remaining instance—one or zero for success or failure, respectively. The results 
of all n judgments, one for each member of the dataset, are averaged, and that 
average represents the final error estimate.

This procedure is an attractive one for two reasons. First, the greatest possible 
amount of data is used for training in each case, which presumably increases the 
chance that the classifier is an accurate one. Second, the procedure is deterministic: 
No random sampling is involved. There is no point in repeating it 10 times, or 
repeating it at all: The same result will be obtained each time. Set against this is the 
high computational cost, because the entire learning procedure must be executed n 
times and this is usually infeasible for large datasets. Nevertheless, leave-one-out 
seems to offer a chance of squeezing the maximum out of a small dataset and getting 
as accurate an estimate as possible.

But there is a disadvantage to leave-one-out cross-validation, apart from the 
computational expense. By its very nature, it cannot be stratified—worse than that, 
it guarantees a nonstratified sample. Stratification involves getting the correct pro-
portion of examples in each class into the test set, and this is impossible when the 
test set contains only a single example. A dramatic, although highly artificial, illus-
tration of the problems this might cause is to imagine a completely random dataset 
that contains exactly the same number of instances of each of two classes. The best 
that an inducer can do with random data is to predict the majority class, giving a 
true error rate of 50%. But in each fold of leave-one-out, the opposite class to the 
test instance is in the majority—and therefore the predictions will always be incor-
rect, leading to an estimated error rate of 100%!
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The Bootstrap
The second estimation method we describe, the bootstrap, is based on the statistical 
procedure of sampling with replacement. Previously, whenever a sample was taken 
from the dataset to form a training or test set, it was drawn without replacement. 
That is, the same instance, once selected, could not be selected again. It is like 
picking teams for football: You cannot choose the same person twice. But dataset 
instances are not like people. Most learning schemes can use the same instance 
twice, and it makes a difference in the result of learning if it is present in the training 
set twice. (Mathematical sticklers will notice that we should not really be talking 
about “sets” at all if the same object can appear more than once.)

The idea of the bootstrap is to sample the dataset with replacement to form a 
training set. We will describe a particular variant, mysteriously (but for a reason that 
will soon become apparent) called the 0.632 bootstrap. For this, a dataset of n 
instances is sampled n times, with replacement, to give another dataset of n instances. 
Because some elements in this second dataset will (almost certainly) be repeated, 
there must be some instances in the original dataset that have not been picked—we 
will use these as test instances.

What is the chance that a particular instance will not be picked for the training set? It has 
a 1/n probability of being picked each time and so a 1 – 1/n probability of not being 
picked. Multiply these probabilities together for a sufficient number of picking 
opportunities, n, and the result is a figure of

1 1 0 3681−





≈ =−

n
e

n

.

where e is the base of natural logarithms, 2.7183 (not the error rate!) This gives the 
chance of a particular instance not being picked at all. Thus, for a reasonably large 
dataset, the test set will contain about 36.8% of the instances and the training set will 
contain about 63.2% of them (now you can see why it’s called the 0.632 bootstrap). 
Some instances will be repeated in the training set, bringing it up to a total size of n, 
the same as in the original dataset.

The figure obtained by training a learning system on the training set and cal-
culating its error over the test set will be a pessimistic estimate of the true error 
rate because the training set, although its size is n, nevertheless contains only 63% 
of the instances, which is not a great deal compared, for example, with the 90% 
used in tenfold cross-validation. To compensate for this, we combine the test-set 
error rate with the resubstitution error on the instances in the training set. The 
resubstitution figure, as we warned earlier, gives a very optimistic estimate of the 
true error and should certainly not be used as an error figure on its own. But the 
bootstrap procedure combines it with the test error rate to give a final estimate e 
as follows:
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e e e= × + ×0 632 0 368. .test instances training instances

Then, the whole bootstrap procedure is repeated several times, with different 
replacement samples for the training set, and the results are averaged.

The bootstrap procedure may be the best way of estimating the error rate for 
very small datasets. However, like leave-one-out cross-validation, it has disadvan-
tages that can be illustrated by considering a special, artificial situation. In fact, the 
very dataset we considered above will do: a completely random dataset with two 
classes of equal size. The true error rate is 50% for any prediction rule. But a scheme 
that memorized the training set would give a perfect resubstitution score of 100%, 
so that etraining instances = 0, and the 0.632 bootstrap will mix this in with a weight of 
0.368 to give an overall error rate of only 31.6% (0.632 × 50% + 0.368 × 0%), which 
is misleadingly optimistic.

5.5 COMPARING DATA MINING SCHEMES
We often need to compare two different learning schemes on the same problem to 
see which is the better one to use. It seems simple: Estimate the error using cross-
validation (or any other suitable estimation procedure), perhaps repeated several 
times, and choose the scheme with the smaller estimate. This is quite sufficient in 
many practical applications: If one scheme has a lower estimated error than another 
on a particular dataset, the best we can do is to use the former scheme’s model. 
However, it may be that the difference is simply due to estimation error, and in some 
circumstances it is important to determine whether one scheme is really better than 
another on a particular problem. This is a standard challenge for machine learning 
researchers. If a new learning algorithm is proposed, its proponents must show that 
it improves on the state of the art for the problem at hand and demonstrate that the 
observed improvement is not just a chance effect in the estimation process.

This is a job for a statistical test based on confidence bounds, the kind we met 
previously when trying to predict true performance from a given test-set error rate. 
If there were unlimited data, we could use a large amount for training and evaluate 
performance on a large independent test set, obtaining confidence bounds just as 
before. However, if the difference turns out to be significant we must ensure that 
this is not just because of the particular dataset we happened to base the experiment 
on. What we want to determine is whether one scheme is better or worse than another 
on average, across all possible training and test datasets that can be drawn from the 
domain. Because the amount of training data naturally affects performance, all 
datasets should be the same size. Indeed, the experiment might be repeated with 
different sizes to obtain a learning curve.

For the moment, assume that the supply of data is unlimited. For definiteness, 
suppose that cross-validation is being used to obtain the error estimates (other esti-
mators, such as repeated cross-validation, are equally viable). For each learning 
scheme we can draw several datasets of the same size, obtain an accuracy estimate 
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for each dataset using cross-validation, and compute the mean of the estimates. Each 
cross-validation experiment yields a different, independent error estimate. What we 
are interested in is the mean accuracy across all possible datasets of the same size, 
and whether this mean is greater for one scheme or the other.

From this point of view, we are trying to determine whether the mean of a set 
of samples—cross-validation estimates for the various datasets that we sampled 
from the domain—is significantly greater than, or significantly less than, the mean 
of another. This is a job for a statistical device known as the t-test, or Student’s t-test. 
Because the same cross-validation experiment can be used for both learning schemes 
to obtain a matched pair of results for each dataset, a more sensitive version of the 
t-test known as a paired t-test can be used.

We need some notation. There is a set of samples x1, x2, …, xk obtained by successive 
tenfold cross-validations using one learning scheme, and a second set of samples y1, 
y2, …, yk obtained by successive tenfold cross-validations using the other. Each cross-
validation estimate is generated using a different dataset, but all datasets are of the same 
size and from the same domain. We will get best results if exactly the same cross-
validation partitions are used for both schemes, so that x1 and y1 are obtained using the 
same cross-validation split, as are x2 and y2, and so on. Denote the mean of the first set 
of samples by x and the mean of the second set by y . We are trying to determine whether 
x is significantly different from y .

If there are enough samples, the mean (x ) of a set of independent samples (x1, x2, …, 
xk) has a normal (i.e., Gaussian) distribution, regardless of the distribution underlying the 
samples themselves. Call the true value of the mean µ. If we knew the variance of that 
normal distribution, so that it could be reduced to have zero mean and unit variance, we 
could obtain confidence limits on µ given the mean of the samples (x ). However, the 
variance is unknown, and the only way we can obtain it is to estimate it from the set of 
samples.

That is not hard to do. The variance of x can be estimated by dividing the variance 
calculated from the samples x1, x2, …, xk—call it σx

2—by k. We can reduce the 
distribution of x to have zero mean and unit variance by using

x

kx

− µ
σ 2

The fact that we have to estimate the variance changes things somewhat. Because the 
variance is only an estimate, this does not have a normal distribution (although it does 
become normal for large values of k). Instead, it has what is called a Student’s 
distribution with k – 1 degrees of freedom. What this means in practice is that we have to 
use a table of confidence intervals for the Student’s distribution rather than the 
confidence table for the normal distribution given earlier. For 9 degrees of freedom (which 
is the correct number if we are using the average of 10 cross-validations) the appropriate 
confidence limits are shown in Table 5.2. If you compare them with Table 5.1 you will 
see that the Student’s figures are slightly more conservative—for a given degree of 
confidence, the interval is slightly wider—and this reflects the additional uncertainty 
caused by having to estimate the variance. Different tables are needed for different 
numbers of degrees of freedom, and if there are more than 100 degrees of freedom the 
confidence limits are very close to those for the normal distribution. Like Table 5.1, the 
figures in Table 5.2 are for a “one-sided” confidence interval.
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To decide whether the means x and y , each an average of the same number k of 
samples, are the same or not, we consider the differences di between corresponding 
observations, di = xi − yi. This is legitimate because the observations are paired. The 
mean of this difference is just the difference between the two means, d x y= − , and, 
like the means themselves, it has a Student’s distribution with k – 1 degrees of freedom. 
If the means are the same, the difference is zero (this is called the null hypothesis); 
if they’re significantly different, the difference will be significantly different from zero.  
So for a given confidence level, we will check whether the actual difference exceeds the 
confidence limit.

First, reduce the difference to a zero-mean, unit-variance variable called the t-statistic,

t d

kd

=
σ 2

where σd
2 is the variance of the difference samples. Then, decide on a confidence 

level—generally, 5% or 1% is used in practice. From this, the confidence limit z is 
determined using Table 5.2 if k is 10; if it is not, a confidence table of the Student 
distribution for the k value in question is used. A two-tailed test is appropriate because we 
do not know in advance whether the mean of the x’s is likely to be greater than that of 
the y’s or vice versa; thus, for a 1% test we use the value corresponding to 0.5% in Table 
5.2. If the value of t according to the last formula is greater than z, or less than –z, we 
reject the null hypothesis that the means are the same and conclude that there really is a 
significant difference between the two learning methods on that domain for that dataset 
size.

Two observations are worth making on this procedure. The first is technical: What if 
the observations were not paired? That is, what if we were unable, for some reason, to 
assess the error of each learning scheme on the same datasets? What if the number of 
datasets for each scheme was not even the same? These conditions could arise if someone 
else had evaluated one of the schemes and published several different estimates for a 
particular domain and dataset size—or perhaps just their mean and variance—and we 
wished to compare this with a different learning scheme. Then it is necessary to use a 
regular, nonpaired t-test. Instead of taking the mean of the difference, d , we use the 
difference of the means, x y− . Of course, that’s the same thing: The mean of the 
difference is the difference of the means. But the variance of the difference d is not the 
same. If the variance of the samples x1, x2, …, xk is σx

2 and the variance of the samples 
y1, y2, …, y! is σy

2,

σ σx y

k

2 2

+
!

is a good estimate of the variance of the difference of the means. It is this variance (or 
rather its square root) that should be used as the denominator of the t-statistic given 
previously. The degrees of freedom, necessary for consulting Student’s confidence tables, 
should be taken conservatively to be the minimum of the degrees of freedom of the two 
samples. Essentially, knowing that the observations are paired allows the use of a better 
estimate for the variance, which will produce tighter confidence bounds.

The second observation concerns the assumption that there is essentially unlimited 
data, so that several independent datasets of the right size can be used. In practice, there 
is usually only a single dataset of limited size. What can be done? We could split the data 
into subsets (perhaps 10) and perform a cross-validation on each one. However, the 
overall result will only tell us whether a learning scheme is preferable for that particular 
size—one-tenth of the original dataset. Alternatively, the original dataset could be 
reused—for example, with different randomizations of the dataset for each cross-
validation. However, the resulting cross-validation estimates will not be independent 
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because they are not based on independent datasets. In practice, this means that a 
difference may be judged to be significant when in fact it is not. Indeed, just increasing 
the number of samples k—that is, the number of cross-validation runs—will eventually 
yield an apparently significant difference because the value of the t-statistic increases 
without bound.

Various modifications of the standard t-test have been proposed to circumvent this 
problem, all of them heuristic and somewhat lacking in theoretical justification. One that 
appears to work well in practice is the corrected resampled t-test. Assume for the moment 
that the repeated holdout method is used instead of cross-validation, repeated k times on 
different random splits of the same dataset to obtain accuracy estimates for two learning 
schemes. Each time, n1 instances are used for training and n2 for testing, and differences 
di are computed from performance on the test data. The corrected resampled t-test uses 
the modified statistic

t d

k
n
n d

=
+





1 2

1

2σ

in exactly the same way as the standard t-statistic. A closer look at the formula shows that 
its value cannot be increased simply by increasing k. The same modified statistic can be 
used with repeated cross-validation, which is just a special case of repeated holdout in 
which the individual test sets for one cross-validation do not overlap. For tenfold cross-
validation repeated 10 times, k =100, n2/n1 = 0.1/0.9, and σd

2 is based on 100 
differences.

Table 5.2 Confidence Limits for Student’s Distribution 
with 9 Degrees of Freedom

Pr[X ≥ z] z

0.1% 4.30
0.5% 3.25
1% 2.82
5% 1.83

10% 1.38
20% 0.88

5.6 PREDICTING PROBABILITIES
Throughout this chapter we have tacitly assumed that the goal is to maximize the 
success rate of the predictions. The outcome for each test instance is either correct, 
if the prediction agrees with the actual value for that instance, or incorrect, if it does 
not. There are no grays: Everything is black or white, correct or incorrect. In many 
situations, this is the most appropriate perspective. If the learning scheme, when it 
is actually applied, results in either a correct or an incorrect prediction, success is 
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the right measure to use. This is sometimes called a 0 – 1 loss function: The “loss” 
is either 0 if the prediction is correct or 1 if it is not. The use of loss is conventional, 
although a more optimistic terminology might couch the outcome in terms of profit 
instead.

Other situations are softer-edged. Most learning schemes can associate a prob-
ability with each prediction (as the Naïve Bayes scheme does). It might be more 
natural to take this probability into account when judging correctness. For example, 
a correct outcome predicted with a probability of 99% should perhaps weigh more 
heavily than one predicted with a probability of 51%, and, in a two-class situation, 
perhaps the latter is not all that much better than an incorrect outcome predicted 
with probability 51%. Whether it is appropriate to take prediction probabilities into 
account depends on the application. If the ultimate application really is just a predic-
tion of the outcome, and no prizes are awarded for a realistic assessment of the 
likelihood of the prediction, it does not seem appropriate to use probabilities. If the 
prediction is subject to further processing, however—perhaps involving assessment 
by a person, or a cost analysis, or maybe even serving as input to a second-level 
learning process—then it may well be appropriate to take prediction probabilities 
into account.

Quadratic Loss Function
Suppose for a single instance there are k possible outcomes, or classes, and for 
a given instance the learning scheme comes up with a probability vector p1, p2, 
…, pk for the classes (where these probabilities sum to 1). The actual outcome 
for that instance will be one of the possible classes. However, it is convenient 
to express it as a vector a1, a2, …, ak whose ith component, where i is the actual 
class, is 1 and all other components are 0. We can express the penalty associated 
with this situation as a loss function that depends on both the p vector and the 
a vector.

One criterion that is frequently used to evaluate probabilistic prediction is the 
quadratic loss function:

( )p aj jj
−∑ 2

Note that this is for a single instance: The summation is over possible outputs, not 
over different instances. Just one of the a’s will be 1 and the rest 0, so the sum 
contains contributions of pj

2 for the incorrect predictions and (1– pi)2 for the correct 
one. Consequently, it can be written as

1 2 2− + ∑p pi jj

where i is the correct class. When the test set contains several instances, the loss 
function is summed over them all.
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It is an interesting theoretical fact that if you seek to minimize the value of the quadratic 
loss function in a situation where the actual class is generated probabilistically, the best 
strategy is to choose for the p vector the actual probabilities of the different outcomes—
that is, pi = Pr[class = i ]. If the true probabilities are known, they will be the best values 
for p. If they are not, a system that strives to minimize the quadratic loss function will be 
encouraged to use its best estimate of Pr[class = i ] as the value for pi.

This is quite easy to see. Denote the true probabilities by p1*, p2*, …, pk* so that pi* 
= Pr[class = i ]. The expected value of the quadratic loss function over test instances can 
be rewritten as

E p a E p E p a E a

p p p p

j jj j j j jj

j j j j

( ) ( [ ] [ ] [ ])

(

−  = − +

= − +
∑ ∑2 2 2

2

2

2 * *))

(( ) ( ))
j

j j j jj
p p p p

∑
∑= − + −* * *2 1

The first stage involves bringing the expectation inside the sum and expanding the square. 
For the second, pj is just a constant and the expected value of aj is simply pj*; moreover, 
because aj is either 0 or 1, aj

2 = aj and its expected value is pj* as well. The third stage is 
straightforward algebra. To minimize the resulting sum, it is clear that it is best to choose 
pj = pj*, so that the squared term disappears and all that remains is a term that is just 
the variance of the true distribution governing the actual class.

Minimizing the squared error has a long history in prediction problems. In the 
present context, the quadratic loss function forces the predictor to be honest about 
choosing its best estimate of the probabilities—or, rather, it gives preference to 
predictors that are able to make the best guess at the true probabilities. Moreover, 
the quadratic loss function has some useful theoretical properties that we will not 
go into here. For all these reasons, it is frequently used as the criterion of success 
in probabilistic prediction situations.

Informational Loss Function
Another popular criterion used to evaluate probabilistic prediction is the informa-
tional loss function,

− log2 pi

where the ith prediction is the correct one. This is in fact identical to the negative 
of the log-likelihood function that is optimized by logistic regression, described in 
Section 4.6 (modulo a constant factor, which is determined by the base of the loga-
rithm). It represents the information (in bits) required to express the actual class i 
with respect to the probability distribution p1, p2, …, pk. In other words, if you were 
given the probability distribution and someone had to communicate to you which 
class was the one that actually occurred, this is the number of bits they would need 
to encode the information if they did it as effectively as possible. (Of course, it is 
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always possible to use more bits.) Because probabilities are always less than 1, their 
logarithms are negative, and the minus sign makes the outcome positive. For 
example, in a two-class situation—heads or tails—with an equal probability of each 
class, the occurrence of a head would take 1 bit to transmit because −log2 1/2 is 1.

The expected value of the informational loss function, if the true probabilities are p1*, p2*, 
…, pk*, is

− − − −p p p p p pk k1 2 1 2 2 2 2* * *log log log…

Like the quadratic loss function, this expression is minimized by choosing pj = pj*, in 
which case the expression becomes the entropy of the true distribution:

− − − −p p p p p pk k1 2 1 2 2 2 2* * * * * *log log log…

Thus, the informational loss function also rewards honesty in predictors that know the true 
probabilities, and encourages predictors that do not to put forward their best guess.

One problem with the informational loss function is that if you assign a probabil-
ity of 0 to an event that actually occurs, the function’s value is infinity. This corre-
sponds to losing your shirt when gambling. Prudent predictors operating under the 
informational loss function do not assign zero probability to any outcome. This does 
lead to a problem when no information is available about that outcome on which to 
base a prediction. This is called the zero-frequency problem, and various plausible 
solutions have been proposed, such as the Laplace estimator discussed for Naïve 
Bayes in Chapter 4 (page 93).

Discussion
If you are in the business of evaluating predictions of probabilities, which of 
the two loss functions should you use? That’s a good question, and there is no 
universally agreed-on answer—it’s really a matter of taste. They both do the 
fundamental job expected of a loss function: They give maximum reward to 
predictors that are capable of predicting the true probabilities accurately. However, 
there are some objective differences between the two that may help you form 
an opinion.

The quadratic loss function takes into account not only the probability assigned 
to the event that actually occurred but also the other probabilities. For example, in 
a four-class situation, suppose you assigned 40% to the class that actually came up 
and distributed the remainder among the other three classes. The quadratic loss will 
depend on how you distributed it because of the sum of the pj

2 that occurs in the 
expression given earlier for the quadratic loss function. The loss will be smallest if 
the 60% was distributed evenly among the three classes: An uneven distribution will 
increase the sum of the squares. The informational loss function, on the other hand, 
depends solely on the probability assigned to the class that actually occurred. If 
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you’re gambling on a particular event coming up, and it does, who cares about 
potential winnings from other events?

If you assign a very small probability to the class that actually occurs, the infor-
mation loss function will penalize you massively. The maximum penalty, for a zero 
probability, is infinite. The quadratic loss function, on the other hand, is milder, being 
bounded by

1 2+ ∑ pjj

which can never exceed 2.
Finally, proponents of the informational loss function point to a general theory 

of performance assessment in learning called the minimum description length (MDL) 
principle. They argue that the size of the structures that a scheme learns can be 
measured in bits of information, and if the same units are used to measure the 
loss, the two can be combined in useful and powerful ways. We return to this in 
Section 5.9.

5.7 COUNTING THE COST
The evaluations that have been discussed so far do not take into account the cost of 
making wrong decisions, wrong classifications. Optimizing the classification rate 
without considering the cost of the errors often leads to strange results. In one case, 
machine learning was being used to determine the exact day that each cow in a dairy 
herd was in estrus, or “in heat.” Cows were identified by electronic ear tags, and 
various attributes were used such as milk volume and chemical composition (recorded 
automatically by a high-tech milking machine) and milking order—for cows are 
regular beasts and generally arrive in the milking shed in the same order, except in 
unusual circumstances such as estrus. In a modern dairy operation it’s important to 
know when a cow is ready: Animals are fertilized by artificial insemination and 
missing a cycle will delay calving unnecessarily, causing complications down the 
line. In early experiments, machine learning schemes stubbornly predicted that each 
cow was never in estrus. Like humans, cows have a menstrual cycle of approxi-
mately 30 days, so this “null” rule is correct about 97% of the time—an impressive 
degree of accuracy in any agricultural domain! What was wanted, of course, was 
rules that predicted the “in estrus” situation more accurately than the “not in estrus” 
one: The costs of the two kinds of error were different. Evaluation by classification 
accuracy tacitly assumes equal error costs.

Other examples where errors cost different amounts include loan decisions: The 
cost of lending to a defaulter is far greater than the lost-business cost of refusing a 
loan to a nondefaulter. And oil-slick detection: The cost of failing to detect an 
environment-threatening real slick is far greater than the cost of a false alarm. And 
load forecasting: The cost of gearing up electricity generators for a storm that doesn’t 
hit is far less than the cost of being caught completely unprepared. And diagnosis: 
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Table 5.3 Different Outcomes of a Two-Class Prediction

Predicted Class

yes no

Actual Class yes true positive false negative

no false positive true negative

The cost of misidentifying problems with a machine that turns out to be free of faults 
is less than the cost of overlooking problems with one that is about to fail. And 
promotional mailing: The cost of sending junk mail to a household that doesn’t 
respond is far less than the lost-business cost of not sending it to a household that 
would have responded. Why—these are all the examples from Chapter 1! In truth, 
you’d be hard pressed to find an application in which the costs of different kinds of 
errors were the same.

In the two-class case with classes yes and no—lend or not lend, mark a suspicious 
patch as an oil slick or not, and so on—a single prediction has the four different 
possible outcomes shown in Table 5.3. The true positives (TP) and true negatives 
(TN) are correct classifications. A false positive (FP) is when the outcome is incor-
rectly predicted as yes (or positive) when it is actually no (negative). A false negative 
(FN) is when the outcome is incorrectly predicted as negative when it is actually 
positive. The true positive rate is TP divided by the total number of positives, which 
is TP + FN; the false positive rate is FP divided by the total number of negatives, 
which is FP + TN. The overall success rate is the number of correct classifications 
divided by the total number of classifications:

TP TN
TP TN FP FN

+
+ + +

Finally, the error rate is 1 minus this.
In multiclass prediction, the result on a test set is often displayed as a two-

dimensional confusion matrix with a row and column for each class. Each matrix 
element shows the number of test examples for which the actual class is the row 
and the predicted class is the column. Good results correspond to large numbers 
down the main diagonal and small, ideally zero, off-diagonal elements. Table 5.4(a) 
shows a numeric example with three classes. In this case, the test set has 200 
instances (the sum of the nine numbers in the matrix), and 88 + 40 + 12 = 140 of 
them are predicted correctly, so the success rate is 70%.

But is this a fair measure of overall success? How many agreements would you 
expect by chance? This predictor predicts a total of 120 a’s, 60 b’s, and 20 c’s; what 
if you had a random predictor that predicted the same total numbers of the three 
classes? The answer is shown in Table 5.4(b). Its first row divides the 100 a’s in the 
test set into these overall proportions, and the second and third rows do the same 



  165

Ta
bl

e 
5.

4 
D

iff
er

en
t 

O
ut

co
m

es
 o

f 
a 

Th
re

e-
Cl

as
s 

Pr
ed

ic
tio

n:
 (

a)
 A

ct
ua

l 
an

d 
(b

) 
Ex

pe
ct

ed

P
re

di
ct

ed
 C

la
ss

P
re

di
ct

ed
 C

la
ss

a
b

c
To

ta
l

a
b

c
To

ta
l

A
ct

ua
l 

C
la

ss
a

88
10

2
10

0
A

ct
ua

l 
C

la
ss

a
60

30
10

10
0

b
14

40
6

60
b

36
18

6
60

c
18

10
12

40
c

24
12

4
40

To
ta

l
12

0
60

20
To

ta
l

12
0

60
20

(a
) 

(b
)



166 CHAPTER 5 Credibility: Evaluating What’s Been Learned 

thing for the other two classes. Of course, the row and column totals for this matrix 
are the same as before—the number of instances hasn’t changed, and we have 
ensured that the random predictor predicts the same number of a’s, b’s, and c’s as 
the actual predictor.

This random predictor gets 60 + 18 + 4 = 82 instances correct. A measure called 
the Kappa statistic takes this expected figure into account by deducting it from the 
predictor’s successes and expressing the result as a proportion of the total for a 
perfect predictor, to yield 140 – 82 = 58 extra successes out of a possible total of 
200 – 82 = 118, or 49.2%. The maximum value of Kappa is 100%, and the expected 
value for a random predictor with the same column totals is 0. In summary, the 
Kappa statistic is used to measure the agreement between predicted and observed 
categorizations of a dataset, while correcting for an agreement that occurs by chance. 
However, like the plain success rate, it does not take costs into account.

Cost-Sensitive Classification
If the costs are known, they can be incorporated into a financial analysis of the 
decision-making process. In the two-class case, in which the confusion matrix is like 
that of Table 5.3, the two kinds of error—false positives and false negatives—will 
have different costs; likewise, the two types of correct classification may have  
different benefits. In the two-class case, costs can be summarized in the form of a 
2 × 2 matrix in which the diagonal elements represent the two types of correct clas-
sification and the off-diagonal elements represent the two types of error. In the 
multiclass case this generalizes to a square matrix whose size is the number of 
classes, and again the diagonal elements represent the cost of correct classification. 
Table 5.5(a) and (b) shows default cost matrixes for the two- and three-class cases, 
whose values simply give the number of errors: Misclassification costs are all 1.

Taking the cost matrix into account replaces the success rate by the average cost 
(or, thinking more positively, profit) per decision. Although we will not do so here, 
a complete financial analysis of the decision-making process might also take into 
account the cost of using the machine learning tool—including the cost of gathering 
the training data—and the cost of using the model, or decision structure, that it 

Table 5.5 Default Cost Matrixes: (a) Two-Class Case and (b) Three-Class Case

Predicted Class Predicted Class

yes no a b c

Actual 
Class

yes 0 1
Actual 
Class

a 0 1 1

no 1 0 b 1 0 1

c 1 1 0

(a) (b)



 5.7 Counting the Cost 167

produces—including the cost of determining the attributes for the test instances. If 
all costs are known, and the projected number of the four different outcomes in the 
cost matrix can be estimated, say using cross-validation, it is straightforward to 
perform this kind of financial analysis.

Given a cost matrix, you can calculate the cost of a particular learned model on 
a given test set just by summing the relevant elements of the cost matrix for the 
model’s prediction for each test instance. Here, costs are ignored when making 
predictions, but taken into account when evaluating them.

If the model outputs the probability associated with each prediction, it can be 
adjusted to minimize the expected cost of the predictions. Given a set of predicted 
probabilities for each outcome on a certain test instance, one normally selects the 
most likely outcome. Instead, the model could predict the class with the smallest 
expected misclassification cost. For example, suppose in a three-class situation the 
model assigns the classes a, b, and c to a test instance with probabilities pa, pb, and 
pc, and the cost matrix is that in Table 5.5(b). If it predicts a, the expected cost of 
the prediction is obtained by multiplying the first column of the matrix, [0,1,1], by 
the probability vector, [pa, pb, pc], yielding pb + pc , or 1 – pa , because the three 
probabilities sum to 1. Similarly, the costs for predicting the other two classes are 
1 – pb and 1 – pc. For this cost matrix, choosing the prediction with the lowest 
expected cost is the same as choosing the one with the greatest probability. For a 
different cost matrix it might be different.

We have assumed that the learning scheme outputs probabilities, as Naïve Bayes 
does. Even if they do not normally output probabilities, most classifiers can easily 
be adapted to compute them. In a decision tree, for example, the probability distribu-
tion for a test instance is just the distribution of classes at the corresponding leaf.

Cost-Sensitive Learning
We have seen how a classifier, built without taking costs into consideration, can be 
used to make predictions that are sensitive to the cost matrix. In this case, costs are 
ignored at training time but used at prediction time. An alternative is to do just the 
opposite: Take the cost matrix into account during the training process and ignore 
costs at prediction time. In principle, better performance might be obtained if the 
classifier were tailored by the learning algorithm to the cost matrix.

In the two-class situation, there is a simple and general way to make any learning 
scheme cost sensitive. The idea is to generate training data with a different propor-
tion of yes and no instances. Suppose you artificially increase the number of no 
instances by a factor of 10 and use the resulting dataset for training. If the learning 
scheme is striving to minimize the number of errors, it will come up with a decision 
structure that is biased toward avoiding errors on the no instances because such 
errors are effectively penalized tenfold. If data with the original proportion of no 
instances is used for testing, fewer errors will be made on these than on yes 
instances—that is, there will be fewer false positives than false negatives—because 
false positives have been weighted 10 times more heavily than false negatives. 
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Varying the proportion of instances in the training set is a general technique for 
building cost-sensitive classifiers.

One way to vary the proportion of training instances is to duplicate instances in 
the dataset. However, many learning schemes allow instances to be weighted. (As 
we mentioned in Section 3.2, this is a common technique for handling missing 
values.) Instance weights are normally initialized to 1. To build cost-sensitive clas-
sifiers the weights can be initialized to the relative cost of the two kinds of error, 
false positives and false negatives.

Lift Charts
In practice, costs are rarely known with any degree of accuracy, and people will 
want to ponder various different scenarios. Imagine you’re in the direct-mailing 
business and are contemplating a mass mailout of a promotional offer to 1,000,000 
households, most of whom won’t respond, of course. Let us say that, based on previ-
ous experience, the proportion that normally respond is known to be 0.1% (1000 
respondents). Suppose a data mining tool is available that, based on known informa-
tion about the households, identifies a subset of 100,000 for which the response rate 
is 0.4% (400 respondents). It may well pay off to restrict the mailout to these 100,000 
households; this, of course, depends on the mailing cost compared with the return 
gained for each response to the offer. In marketing terminology, the increase in 
response rate, a factor of 4 in this case, is known as the lift factor yielded by the 
learning tool. If you knew the costs, you could determine the payoff implied by a 
particular lift factor.

But you probably want to evaluate other possibilities too. The same data mining 
scheme, with different parameter settings, may be able to identify 400,000 house-
holds for which the response rate will be 0.2% (800 respondents), corresponding 
to a lift factor of 2. Again, whether this would be a more profitable target for 
the mailout can be calculated from the costs involved. It may be necessary to 
factor in the cost of creating and using the model, including collecting the infor-
mation that is required to come up with the attribute values. After all, if developing 
the model is very expensive, a mass mailing may be more cost effective than a 
targeted one.

Given a learning scheme that outputs probabilities for the predicted class of each 
member of the set of test instances (as Naïve Bayes does), your job is to find subsets 
of test instances that have a high proportion of positive instances, higher than in 
the test set as a whole. To do this, the instances should be sorted in descending 
order of predicted probability of yes. Then, to find a sample of a given size with 
the greatest possible proportion of positive instances, just read the requisite number 
of instances off the list, starting at the top. If each test instance’s class is known, 
you can calculate the lift factor by simply counting the number of positive instances 
that the sample includes, dividing by the sample size to obtain a success proportion, 
and dividing by the success proportion for the complete test set to determine the 
lift factor.
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Table 5.6 Data for a Lift Chart

Rank Predicted Actual Class

 1 0.95 yes
 2 0.93 yes
 3 0.93 no
 4 0.88 yes
 5 0.86 yes
 6 0.85 yes
 7 0.82 yes
 8 0.80 yes
 9 0.80 no
10 0.79 yes
11 0.77 no
12 0.76 yes
13 0.73 yes
14 0.65 no
15 0.63 yes
16 0.58 no
17 0.56 yes
18 0.49 no
19 0.48 yes
… … …

and not the actual classes, your best bet would be the top 10 ranking instances. 
Eight of these are positive, so the success proportion for this sample is 80%,  
corresponding to a lift factor of about 2.4.

If you knew the different costs involved, you could work them out for each sample 
size and choose the most profitable. But a graphical depiction of the various possibili-
ties will often be far more revealing than presenting a single “optimal” decision. 
Repeating the operation for different-size samples allows you to plot a lift chart like 
that of Figure 5.1. The horizontal axis shows the sample size as a proportion of the 
total possible mailout. The vertical axis shows the number of responses obtained. The 
lower left and upper right points correspond to no mailout at all, with a response of 
0, and a full mailout, with a response of 1000. The diagonal line gives the expected 
result for different-size random samples. But we do not choose random samples; we 
choose those instances that, according to the data mining tool, are most likely to 
generate a positive response. These correspond to the upper line, which is derived by 
summing the actual responses over the corresponding percentage of the instance list 
sorted in probability order. The two particular scenarios described previously are 
marked: a 10% mailout that yields 400 respondents and a 40% one that yields 800.

Where you’d like to be in a lift chart is near the upper left corner: At the very 
best, 1000 responses from a mailout of just 1000, where you send only to those 

Table 5.6 shows an example, 
for a small dataset that has 150 
instances, of which 50 are yes 
responses—an overall success 
proportion of 33%. The instances 
have been sorted in descending 
probability order according to the 
predicted probability of a yes 
response. The first instance is  
the one that the learning scheme 
thinks is the most likely to be 
positive, the second is the next 
most likely, and so on. The 
numeric values of the probabili-
ties are unimportant: Rank is the 
only thing that matters. With each 
rank is given the actual class of 
the instance. Thus, the learning 
scheme was correct about items 1 
and 2—they are indeed positives—
but wrong about item 3, which 
turned out to be negative. Now, if 
you were seeking the most prom-
ising sample of size 10, but only 
knew the predicted probabilities 



170 CHAPTER 5 Credibility: Evaluating What’s Been Learned 

FIGURE 5.1 

A hypothetical lift chart. 
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households that will respond and are rewarded with a 100% success rate. Any selec-
tion procedure worthy of the name will keep you above the diagonal—otherwise, 
you’d be seeing a response that is worse than for random sampling. So the operating 
part of the diagram is the upper triangle, and the farther to the upper left the better.

Figure 5.2(a) shows a visualization that allows various cost scenarios to be 
explored in an interactive fashion (called the cost–benefit analyzer, it forms 
part of the Weka workbench described in Part III). Here it is displaying results 
for predictions generated by the Naïve Bayes classifier on a real-world direct-
mail data set. In this example, 47,706 instances were used for training and a 
further 47,706 for testing. The test instances were ranked according to the 
predicted probability of a response to the mailout. The graphs show a lift chart 
on the left and the total cost (or benefit), plotted against the sample size, on 
the right. At the lower left is a confusion matrix; at the lower right is a cost 
matrix.

Cost or benefit values associated with incorrect or correct classifications can be 
entered into the matrix and affect the shape of the curve above. The horizontal slider 
in the middle allows users to vary the percentage of the population that is selected 
from the ranked list. Alternatively, one can determine the sample size by adjusting 
the recall level (the proportion of positives to be included in the sample) or by 
adjusting a threshold on the probability of the positive class, which here corresponds 
to a response to the mailout. When the slider is moved, a large cross shows the cor-
responding point on both graphs. The total cost or benefit associated with the 
selected sample size is shown at the lower right, along with the expected response 
to a random mailout of the same size.
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FIGURE 5.2 

Analyzing the expected benefit of a mailing campaign when the cost of mailing is  
(a) $0.50 and (b) $0.80. 

(a)

(b)
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In the cost matrix in Figure 5.2(a), a cost of $0.50—the cost of mailing—has 
been associated with nonrespondents and a benefit of $15.00 with respondents (after 
deducting the mailing cost). Under these conditions, and using the Naïve Bayes 
classifier, there is no subset from the ranked list of prospects that yields a greater 
profit than mailing to the entire population. However, a slightly higher mailing cost 
changes the situation dramatically, and Figure 5.2(b) shows what happens when it 
is increased to $0.80. Assuming the same profit of $15.00 per respondent, a maximum 
profit of $4,560.60 is achieved by mailing to the top 46.7% of the population. In 
this situation, a random sample of the same size achieves a loss of $99.59.

ROC Curves
Lift charts are a valuable tool, widely used in marketing. They are closely related 
to a graphical technique for evaluating data mining schemes known as ROC curves, 
which are used in just the same situation, where the learner is trying to select samples 
of test instances that have a high proportion of positives. The acronym stands for 
receiver operating characteristic, a term used in signal detection to characterize the 
tradeoff between hit rate and false-alarm rate over a noisy channel. ROC curves 
depict the performance of a classifier without regard to class distribution or error 
costs. They plot the true positive rate on the vertical axis against the true negative 
rate on the horizontal axis. The former is the number of positives included in the 
sample, expressed as a percentage of the total number of positives (TP Rate = 
100 × TP/(TP + FN)); the latter is the number of negatives included in the 
sample, expressed as a percentage of the total number of negatives (FP Rate = 
100 × FP/(FP + TN)). The vertical axis is the same as the lift chart’s except that it 
is expressed as a percentage. The horizontal axis is slightly different—it is the 
number of negatives rather than the sample size. However, in direct marketing situ-
ations where the proportion of positives is very small anyway (like 0.1%), there is 
negligible difference between the size of a sample and the number of negatives it 
contains, so the ROC curve and lift chart look very similar. As with lift charts, the 
upper left corner is the place to be.

Figure 5.3 shows an example ROC curve—the jagged line—for the sample of 
test data shown earlier in Table 5.6. You can follow it along with the table. From 
the origin: Go up two (two positives), along one (one negative), up five (five posi-
tives), along two (two negatives), up one, along one, up two, and so on. Each point 
corresponds to drawing a line at a certain position on the ranked list, counting the 
yes’s and no’s above it, and plotting them vertically and horizontally, respectively. 
As you go farther down the list, corresponding to a larger sample, the number of 
positives and negatives both increase.

The jagged ROC line in Figure 5.3 depends intimately on the details of the par-
ticular sample of test data. This sample dependence can be reduced by applying 
cross-validation. For each different number of no’s—that is, each position along the 
horizontal axis—take just enough of the highest-ranked instances to include that 
number of no’s, and count the number of yes’s they contain. Finally, average that 
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FIGURE 5.3 

A sample ROC curve. 
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number over different folds of the cross-validation. The result is a smooth curve like 
that in Figure 5.3—although in reality such curves do not generally look quite so 
smooth.

This is just one way of using cross-validation to generate ROC curves. A simpler 
approach is to collect the predicted probabilities for all the various test sets (of which 
there are 10 in a tenfold cross-validation), along with the true class labels of the 
corresponding instances, and generate a single ranked list based on this data. This 
assumes that the probability estimates from the classifiers built from the different 
training sets are all based on equally sized random samples of the data. It is not clear 
which method is preferable. However, the latter method is easier to implement.

If the learning scheme does not allow the instances to be ordered, you can first 
make it cost-sensitive as described earlier. For each fold of a tenfold cross-validation, 
weight the instances for a selection of different cost ratios, train the scheme on each 
weighted set, count the true positives and false positives in the test set, and plot the 
resulting point on the ROC axes. (It doesn’t matter whether the test set is weighted 
or not because the axes in the ROC diagram are expressed as the percentage of true 
and false positives.) However, for probabilistic classifiers such as Naïve Bayes it is 
far more costly than the method described previously because it involves a separate 
learning problem for every point on the curve.

It is instructive to look at ROC curves obtained using different learning schemes. 
For example, in Figure 5.4, method A excels if a small, focused sample is sought—
that is, if you are working toward the left side of the graph. Clearly, if you aim to 
cover just 40% of the true positives you should choose method A, which gives a 
false positive rate of around 5%, rather than method B, which gives more than 20% 
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FIGURE 5.4 

ROC curves for two learning schemes. 
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false positives. But method B excels if you are planning a large sample: If you are 
covering 80% of the true positives, B will give a false positive rate of 60% as com-
pared with method A’s 80%. The shaded area is called the convex hull of the two 
curves, and you should always operate at a point that lies on the upper boundary of 
the convex hull.

What about the region in the middle where neither method A nor method B lies 
on the convex hull? It is a remarkable fact that you can get anywhere in the shaded 
region by combining methods A and B and using them at random with appropriate 
probabilities. To see this, choose a particular probability cutoff for method A that 
gives true and false positive rates of tA and fA, respectively, and another cutoff for 
method B that gives tB and fB. If you use these two schemes at random with prob-
abilities p and q, where p + q = 1, then you will get true and false positive rates 
of p . tA + q . tB and p . fA + q . fB. This represents a point lying on the straight line 
joining the points (tA, fA) and (tB, fB), and by varying p and q you can trace out the 
whole line between these two points. By this device, the entire shaded region can 
be reached. Only if a particular scheme generates a point that lies on the convex 
hull should it be used alone. Otherwise, it would always be better to use a combi-
nation of classifiers corresponding to a point that lies on the convex hull.

Recall–Precision Curves
People have grappled with the fundamental tradeoff illustrated by lift charts and 
ROC curves in a wide variety of domains. Information retrieval is a good example. 
Given a query, a Web search engine produces a list of hits that represent documents 



supposedly relevant to the query. Compare one system that locates 100 documents, 
40 of which are relevant, with another that locates 400 documents, 80 of which are 
relevant. Which is better? The answer should now be obvious: It depends on the 
relative cost of false positives, documents returned that aren’t relevant, and false 
negatives, documents that are relevant but aren’t returned. Information retrieval 
researchers define parameters called recall and precision:

Recall
number of documents retrieved that are relevant

tota
=

ll number of documents that are relevant

Precision
number of documents retrieved that are relevant

t
=

ootal number of documents that are retrieved

For example, if the list of yes’s and no’s in Table 5.6 represented a ranked list 
of retrieved documents and whether they were relevant or not, and the entire col-
lection contained a total of 40 relevant documents, then “recall at 10” would refer 
to the recall for the top 10 documents—that is, 8/40 = 20%—while “precision at 
10” would be 8/10 = 80%. Information retrieval experts use recall–precision curves 
that plot one against the other, for different numbers of retrieved documents, in just 
the same way as ROC curves and lift charts—except that, because the axes are dif-
ferent, the curves are hyperbolic in shape and the desired operating point is toward 
the upper right.

Discussion
Table 5.7 summarizes the three different ways introduced for evaluating the same 
basic tradeoff; TP, FP, TN, and FN are the numbers of true positives, false positives, 
true negatives, and false negatives, respectively. You want to choose a set of instances 
with a high proportion of yes instances and a high coverage of the yes instances: 
You can increase the proportion by (conservatively) using a smaller coverage, or 
(liberally) increase the coverage at the expense of the proportion. Different tech-
niques give different tradeoffs, and can be plotted as different lines on any of these 
graphical charts.

People also seek single measures that characterize performance. Two that are 
used in information retrieval are three-point average recall, which gives the average 
precision obtained at recall values of 20%, 50%, and 80%, and 11-point average 
recall, which gives the average precision obtained at recall values of 0%, 10%, 20%, 
30%, 40%, 50%, 60%, 70%, 80%, 90%, and 100%. Also used in information 
retrieval is the F-measure, which is

2 2
2

× ×
+

= ×
× + +

recall precision
recall precision

TP
TP FP FN

Different terms are used in different domains. Physicians, for example, talk about 
the sensitivity and specificity of diagnostic tests. Sensitivity refers to the proportion 
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of people with disease who have a positive test result—that is, tp. Specificity refers 
to the proportion of people without disease who have a negative test result, which 
is 1 – fp. Sometimes the product of these is used as an overall measure:

sensitivity specificity
TP TN

TP FN FP TN
× = − = ×

+ × +
tp fp( )

( ) ( )
1

Finally, of course, there is our old friend the success rate:

TP TN
TP FP TN FN

+
+ + +

To summarize ROC curves in a single quantity, people sometimes use the area 
under the curve (AUC) because, roughly speaking, the larger the area the better the 
model. The area also has a nice interpretation as the probability that the classifier 
ranks a randomly chosen positive instance above a randomly chosen negative one. 
Although such measures may be useful if costs and class distributions are unknown 
and one scheme must be chosen to handle all situations, no single number is able to 
capture the tradeoff. That can only be done by two-dimensional depictions such as 
lift charts, ROC curves, and recall–precision diagrams.

Several methods are commonly employed for computing the area under the ROC 
curve. One, corresponding to a geometric interpretation, is to approximate it by 
fitting several trapezoids under the curve and summing up their area. Another is to 
compute the probability that the classifier ranks a randomly chosen positive instance 
above a randomly chosen negative one. This can be accomplished by calculating the 
Mann–Whitney U statistic, or, more specifically, the ρ statistic from the U statistic. 
This value is easily obtained from a list of test instances sorted in descending order 
of predicted probability of the positive class. For each positive instance, count how 
many negative ones are ranked below it (increase the count by 1

2 if positive and 
negative instances tie in rank). The U statistic is simply the total of these counts. 
The ρ statistic is obtained by dividing U by the product of the number of positive 
and negative instances in the test set—in other words, the U value that would result 
if all positive instances were ranked above the negative ones.

The area under the precision–recall curve (AUPRC) is an alternative summary 
statistic that is preferred by some practitioners, particularly in the information 
retrieval area.

Cost Curves 
ROC curves and their relatives are very useful for exploring the tradeoffs among 
different classifiers over a range of scenarios. However, they are not ideal for evalu-
ating machine learning models in situations with known error costs. For example, 
it is not easy to read off the expected cost of a classifier for a fixed cost matrix and 
class distribution. Neither can you easily determine the ranges of applicability of 
different classifiers. For example, from the crossover point between the two ROC 
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curves in Figure 5.4 it is hard to tell for what cost and class distributions classifier 
A outperforms classifier B.

Cost curves are a different kind of display on which a single classifier corre-
sponds to a straight line that shows how the performance varies as the class distribu-
tion changes. Again, they work best in the two-class case, although you can always 
make a multiclass problem into a two-class one by singling out one class and evalu-
ating it against the remaining ones.

Figure 5.5(a) plots the expected error against the probability of one of the classes. 
You could imagine adjusting this probability by resampling the test set in a non-
uniform way. We denote the two classes by + and –. The diagonals show the per-
formance of two extreme classifiers: One always predicts +, giving an expected error 
of 1 if the dataset contains no + instances and 0 if all its instances are +; the other 
always predicts –, giving the opposite performance. The dashed horizontal line 
shows the performance of the classifier that is always wrong, and the x-axis itself 
represents the classifier that is always correct. In practice, of course, neither of these 
is realizable. Good classifiers have low error rates, so where you want to be is as 
close to the bottom of the diagram as possible.

The line marked A represents the error rate of a particular classifier. If you cal-
culate its performance on a certain test set, its false positive rate, fp, is its expected 
error on a subsample of the test set that contains only examples that are negative 
(p[+] = 0), and its false negative rate, fn, is the error on a subsample that contains 
only positive examples, (p[+] = 1). These are the values of the intercepts at the left 
and right, respectively. You can see immediately from the plot that if p[+] is smaller 
than about 0.2, predictor A is outperformed by the extreme classifier that always 
predicts –, while if it is larger than about 0.65, the other extreme classifier is better.

FIGURE 5.5 

Effect of varying the probability threshold: (a) error curve and (b) cost curve. 



So far we have not taken costs into account, or rather we have used the default 
cost matrix in which all errors cost the same. Cost curves, which do take cost into 
account, look very similar—very similar indeed—but the axes are different. Figure 
5.5(b) shows a cost curve for the same classifier A (note that the vertical scale has 
been enlarged, for convenience, and ignore the gray lines for now). It plots the 
expected cost of using A against the probability cost function, which is a distorted 
version of p[+] that retains the same extremes: 0 when p[+] = 0 and 1 when 
p[+] = 1. Denote by C[+ | –] the cost of predicting + when the instance is actually 
–, and the reverse by C[– | +]. Then the axes of Figure 5.5(b) are

Normalized expected cost = × + + × − +fn p fp pC C[ ] ( [ ])1

Probability cost function p
p C

p C p C
C[ ]

[ ] [ | ]
[ ] [ | ] [ ] [

+ = + − +
+ − + + − ++ −| ]

We are assuming here that correct predictions have no cost: C[+ | +] = C[– | –] = 0. 
If that is not the case, the formulas are a little more complex.

The maximum value that the normalized expected cost can have is 1—that is 
why it is “normalized.” One nice thing about cost curves is that the extreme cost 
values at the left and right sides of the graph are fp and fn, just as they are for the 
error curve, so you can draw the cost curve for any classifier very easily.

Figure 5.5(b) also shows classifier B, whose expected cost remains the same 
across the range—that is, its false positive and false negative rates are equal. As you 
can see, it outperforms classifier A if the probability cost function exceeds about 
0.45, and knowing the costs we could easily work out what this corresponds to in 
terms of class distribution. In situations that involve different class distributions, 
cost curves make it easy to tell when one classifier will outperform another.

In what circumstances might this be useful? To return to our example of predict-
ing when cows will be in estrus, their 30-day cycle, or 1/30 prior probability, is 
unlikely to vary greatly (barring a genetic cataclysm!). But a particular herd may 
have different proportions of cows that are likely to reach estrus in any given week, 
perhaps synchronized with—who knows?—the phase of the moon. Then, different 
classifiers would be appropriate at different times. In the oil spill example, different 
batches of data may have different spill probabilities. In these situations cost curves 
can help to show which classifier to use when.

Each point on a lift chart, ROC curve, or recall–precision curve represents a 
classifier, typically obtained by using different threshold values for a method such 
as Naïve Bayes. Cost curves represent each classifier by a straight line, and a suite 
of classifiers will sweep out a curved envelope whose lower limit shows how well 
that type of classifier can do if the parameter is well chosen. Figure 5.5(b) indicates 
this with a few gray lines. If the process were continued, it would sweep out the 
dotted parabolic curve.

The operating region of classifier B ranges from a probability cost value of about 
0.25 to a value of about 0.75. Outside this region, classifier B is outperformed by 
the trivial classifiers represented by dashed lines. Suppose we decide to use classifier 
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B within this range and the appropriate trivial classifier below and above it. All 
points on the parabola are certainly better than this scheme. But how much better? 
It is hard to answer such questions from an ROC curve, but the cost curve makes 
them easy. The performance difference is negligible if the probability cost value is 
around 0.5, and below a value of about 0.2 and above 0.8 it is barely perceptible. 
The greatest difference occurs at probability cost values of 0.25 and 0.75 and is 
about 0.04, or 4% of the maximum possible cost figure.

5.8 EVALUATING NUMERIC PREDICTION
All the evaluation measures we have described pertain to classification situations 
rather than numeric prediction situations. The basic principles—using an indepen-
dent test set rather than the training set for performance evaluation, the holdout 
method, cross-validation—apply equally well to numeric prediction. But the basic 
quality measure offered by the error rate is no longer appropriate: Errors are not 
simply present or absent; they come in different sizes.

Several alternative measures, some of which are summarized in Table 5.8, can be 
used to evaluate the success of numeric prediction. The predicted values on the test 
instances are p1, p2, …, pn; the actual values are a1, a2, …, an. Notice that pi means 

Mean-squared error ( ) ( )p a p a
n

n n1 1
2 2− + … + −

Root mean-squared error ( ) ( )p a p a
n

n n1 1
2 2− + … + −

Mean-absolute error p a p a
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Relative-squared error* ( ) ( )
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*Here, a is the mean value over the training data.
**Here, a is the mean value over the test data.

Table 5.8 Performance Measures for Numeric Prediction
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something very different here from what it meant in the last section: There it was  
the probability that a particular prediction was in the ith class; here it refers to the 
numerical value of the prediction for the ith test instance.

Mean-squared error is the principal and most commonly used measure; some-
times the square root is taken to give it the same dimensions as the predicted value 
itself. Many mathematical techniques (such as linear regression, explained in Chapter 
4) use the mean-squared error because it tends to be the easiest measure to manipu-
late mathematically: It is, as mathematicians say, “well behaved.” However, here we 
are considering it as a performance measure: All the performance measures are easy 
to calculate, so mean-squared error has no particular advantage. The question is, is 
it an appropriate measure for the task at hand?

Mean absolute error is an alternative: Just average the magnitude of the indi-
vidual errors without taking account of their sign. Mean-squared error tends to 
exaggerate the effect of outliers—instances when the prediction error is larger than 
the others—but absolute error does not have this effect: All sizes of error are treated 
evenly according to their magnitude.

Sometimes it is the relative rather than absolute error values that are of impor-
tance. For example, if a 10% error is equally important whether it is an error of 50 
in a prediction of 500 or an error of 0.2 in a prediction of 2, then averages of absolute 
error will be meaningless—relative errors are appropriate. This effect would be taken 
into account by using the relative errors in the mean-squared error calculation or the 
mean absolute error calculation.

Relative squared error in Table 5.8 refers to something quite different. The error 
is made relative to what it would have been if a simple predictor had been used. The 
simple predictor in question is just the average of the actual values from the training 
data, denoted by a. Thus, relative squared error takes the total squared error and 
normalizes it by dividing by the total squared error of the default predictor. The root 
relative squared error is obtained in the obvious way.

The next error measure goes by the glorious name of relative absolute error and 
is just the total absolute error, with the same kind of normalization. In these three 
relative error measures, the errors are normalized by the error of the simple predictor 
that predicts average values.

The final measure in Table 5.8 is the correlation coefficient, which measures the 
statistical correlation between the a’s and the p’s. The correlation coefficient ranges 
from 1 for perfectly correlated results, through 0 when there is no correlation, to –1 
when the results are perfectly correlated negatively. Of course, negative values 
should not occur for reasonable prediction methods. Correlation is slightly different 
from the other measures because it is scale independent in that, if you take a particu-
lar set of predictions, the error is unchanged if all the predictions are multiplied by 
a constant factor and the actual values are left unchanged. This factor appears in 
every term of SPA in the numerator and in every term of SP in the denominator, thus 
canceling out. (This is not true for the relative error figures, despite normalization: 
If you multiply all the predictions by a large constant, then the difference between 
the predicted and actual values will change dramatically, as will the percentage 
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Table 5.9 Performance Measures for Four Numeric Prediction Models

A B C D

Root mean-squared error 67.8 91.7 63.3 57.4
Mean absolute error 41.3 38.5 33.4 29.2
Root relative squared error 42.2% 57.2% 39.4% 35.8%
Relative absolute error 43.1% 40.1% 34.8% 30.4%
Correlation coefficient 0.88 0.88 0.89 0.91

errors.) It is also different in that good performance leads to a large value of the 
correlation coefficient, whereas because the other methods measure error, good 
performance is indicated by small values.

Which of these measures is appropriate in any given situation is a matter 
that can only be determined by studying the application itself. What are we 
trying to minimize? What is the cost of different kinds of error? Often it is not 
easy to decide. The squared error measures and root-squared error measures 
weigh large discrepancies much more heavily than small ones, whereas the abso-
lute error measures do not. Taking the square root (root mean-squared error) just 
reduces the figure to have the same dimensionality as the quantity being predicted. 
The relative error figures try to compensate for the basic predictability or unpre-
dictability of the output variable: If it tends to lie fairly close to its average 
value, then you expect prediction to be good and the relative figure compensates 
for this. Otherwise, if the error figure in one situation is far greater than in 
another situation, it may be because the quantity in the first situation is inher-
ently more variable and therefore harder to predict, not because the predictor is 
any worse.

Fortunately, it turns out that in most practical situations the best numerical 
prediction method is still the best no matter which error measure is used. For 
example, Table 5.9 shows the result of four different numeric prediction techniques 
on a given dataset, measured using cross-validation. Method D is the best accord-
ing to all five metrics: It has the smallest value for each error measure and the 
largest correlation coefficient. Method C is the second best by all five metrics. 
The performance of A and B is open to dispute: They have the same correlation 
coefficient; A is better than B according to mean-squared and relative squared 
errors, and the reverse is true for absolute and relative absolute error. It is likely 
that the extra emphasis that the squaring operation gives to outliers accounts for 
the differences in this case.

When comparing two different learning schemes that involve numeric prediction, 
the methodology developed in Section 5.5 still applies. The only difference is that 
success rate is replaced by the appropriate performance measure (e.g., root mean-
squared error) when performing the significance test.
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5.9 MINIMUM DESCRIPTION LENGTH PRINCIPLE
What is learned by a machine learning scheme is a kind of “theory” of the domain 
from which the examples are drawn, a theory that is predictive in that it is capable 
of generating new facts about the domain—in other words, the class of unseen 
instances. Theory is rather a grandiose term: We are using it here only in the sense 
of a predictive model. Thus, theories might comprise decision trees or sets of  
rules—they don’t have to be any more “theoretical” than that.

There is a long-standing tradition in science that, other things being equal, 
simple theories are preferable to complex ones. This is known as Occam’s Razor 
after the medieval philosopher William of Occam (or Ockham). Occam’s Razor 
shaves philosophical hairs off a theory. The idea is that the best scientific theory 
is the smallest one that explains all the facts. As Einstein is reputed to have said, 
“Everything should be made as simple as possible, but no simpler.” Of course, 
quite a lot is hidden in the phrase “other things being equal,” and it can be hard 
to assess objectively whether a particular theory really does “explain” all the facts 
on which it is based—that’s what controversy in science is all about.

In our case, in machine learning, most theories make errors. And if what is 
learned is a theory, then the errors it makes are like exceptions to the theory. One 
way to ensure that other things are equal is to insist that the information embodied 
in the exceptions is included as part of the theory when its “simplicity” is judged.

Imagine an imperfect theory for which there are a few exceptions. Not all the 
data is explained by the theory, but most is. What we do is simply adjoin the 
exceptions to the theory, specifying them explicitly as exceptions. This new theory 
is larger: That is a price that, quite justifiably, has to be paid for its inability to 
explain all the data. However, it may be that the simplicity—is it too much to call 
it elegance?—of the original theory is sufficient to outweigh the fact that it does 
not quite explain everything compared with a large, baroque theory that is more 
comprehensive and accurate.

For example, even though Kepler’s three laws of planetary motion did not at the 
time account for the known data quite so well as Copernicus’ latest refinement of 
the Ptolemaic theory of epicycles, they had the advantage of being far less complex, 
and that would have justified any slight apparent inaccuracy. Kepler was well aware 
of the benefits of having a theory that was compact, despite the fact that his theory 
violated his own aesthetic sense because it depended on “ovals” rather than pure 
circular motion. He expressed this in a forceful metaphor: “I have cleared the Augean 
stables of astronomy of cycles and spirals, and left behind me only a single cartload 
of dung.”

The minimum description length, or MDL, principle takes the stance that the best 
theory for a body of data is one that minimizes the size of the theory plus the amount 
of information necessary to specify the exceptions relative to the theory—the small-
est “cartload of dung.” In statistical estimation theory, this has been applied success-
fully to various parameter-fitting problems. It applies to machine learning as follows: 
Given a set of instances, a learning scheme infers a theory—be it ever so simple; 
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unworthy, perhaps, to be called a “theory”—from them. Using a metaphor of com-
munication, imagine that the instances are to be transmitted through a noiseless 
channel. Any similarity that is detected among them can be exploited to give a more 
compact coding. According to the MDL principle, the best theory is the one that 
minimizes the number of bits required to communicate the theory, along with the 
labels of the examples from which it was made.

Now the connection with the informational loss function introduced in Section 
5.6 should be starting to emerge. That function measures the error in terms of the 
number of bits required to transmit the instances’ class labels, given the probabi-
listic predictions made by the theory. According to the MDL principle, we need 
to add to this the “size” of the theory in bits, suitably encoded, to obtain an overall 
figure for complexity. However, the MDL principle refers to the information required 
to transmit the examples from which the theory was formed—that is, the training 
instances, not a test set. The overfitting problem is avoided because a complex 
theory that overfits will be penalized relative to a simple one by virtue of the fact 
that it takes more bits to encode. At one extreme is a very complex, highly over-
fitted theory that makes no errors on the training set. At the other is a very simple 
theory—the null theory—which does not help at all when transmitting the training 
set. And in between are theories of intermediate complexity, which make proba-
bilistic predictions that are imperfect and need to be corrected by transmitting 
some information about the training set. The MDL principle provides a means of 
comparing all these possibilities on an equal footing to see which is the best. We 
have found the holy grail: an evaluation scheme that works on the training set 
alone and does not need a separate test set. But the devil is in the details, as we 
will see.

Suppose a learning scheme comes up with a theory T, based on a training 
set E of examples, that requires a certain number of bits L[T] to encode, where 
L is for length. We are only interested in predicting class labels correctly, so we 
assume that E stands for the collection of class labels in the training set. Given 
the theory, the training set itself can be encoded in a certain number of  
bits, L[E | T]. L[E | T] is in fact given by the informational loss function summed 
over all members of the training set. Then the total description length of theory 
plus training set is

L L[ ] [ | ]T E T+

and the MDL principle recommends choosing the theory T that minimizes this sum.
There is a remarkable connection between the MDL principle and basic probabil-

ity theory. Given a training set E, we seek the “most likely” theory T—that is, 
the theory for which the a posteriori probability Pr[T | E]—the probability after the 
examples have been seen—is maximized. Bayes’ rule of conditional probability  
(the very same rule that we encountered in Section 4.2) dictates that

Pr[ | ]
Pr[ | ]Pr[ ]

Pr[ ]
T E

E T T
E

=
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Taking negative logarithms,

− = − − +log Pr[ | ] log Pr[ | ] log Pr[ ] log Pr[ ]T E E T T E

Maximizing the probability is the same as minimizing its negative logarithm. 
Now (as we saw in Section 5.6) the number of bits required to code something is just 
the negative logarithm of its probability. Furthermore, the final term, log Pr[E], 
depends solely on the training set and not on the learning method. Thus, choosing the 
theory that maximizes the probability Pr[T | E] is tantamount to choosing the theory 
that minimizes

L L[ | ] [ ]E T T+

In other words, the MDL principle!
This astonishing correspondence with the notion of maximizing the a posteriori 

probability of a theory after the training set has been taken into account gives cre-
dence to the MDL principle. But it also points out where the problems will sprout 
when the principle is applied in practice. The difficulty with applying Bayes’ rule 
directly is in finding a suitable prior probability distribution Pr[T] for the theory. In 
the MDL formulation, that translates into finding how to code the theory T into bits 
in the most efficient way. There are many ways of coding things, and they all depend 
on presuppositions that must be shared by encoder and decoder. If you know in 
advance that the theory is going to take a certain form, you can use that information 
to encode it more efficiently. How are you going to actually encode T? The devil is 
in the details.

Encoding E with respect to T to obtain L[E | T] seems a little more straightfor-
ward: We have already met the informational loss function. But actually, when you 
encode one member of the training set after another, you are encoding a sequence 
rather than a set. It is not necessary to transmit the training set in any particular 
order, and it ought to be possible to use that fact to reduce the number of bits 
required. Often, this is simply approximated by subtracting log n! (where n is the 
number of elements in E), which is the number of bits needed to specify a particular 
permutation of the training set (and because this is the same for all theories, it doesn’t 
actually affect the comparison between them). But one can imagine using the fre-
quency of the individual errors to reduce the number of bits needed to code them. 
Of course, the more sophisticated the method that is used to code the errors, the less 
the need for a theory in the first place—so whether a theory is justified or not depends 
to some extent on how the errors are coded. The details, the details.

We end this section as we began, on a philosophical note. It is important to 
appreciate that Occam’s Razor, the preference of simple theories over complex ones, 
has the status of a philosophical position or “axiom” rather than something that can 
be proven from first principles. While it may seem self-evident to us, this is a func-
tion of our education and the times we live in. A preference for simplicity is—or 
may be—culture specific rather than absolute.
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The Greek philosopher Epicurus (who enjoyed good food and wine and suppos-
edly advocated sensual pleasure—in moderation—as the highest good) expressed 
almost the opposite sentiment. His principle of multiple explanations advises that “If 
more than one theory is consistent with the data, keep them all” on the basis that if 
several explanations are equally in agreement, it may be possible to achieve a higher 
degree of precision by using them together—and, anyway, it would be unscientific to 
discard some arbitrarily. This brings to mind instance-based learning, in which all the 
evidence is retained to provide robust predictions, and resonates strongly with deci-
sion combination methods such as bagging and boosting (described in Chapter 8) 
that actually do gain predictive power by using multiple explanations together.

5.10 APPLYING THE MDL PRINCIPLE TO CLUSTERING
One of the nice things about the minimum description length principle is that, unlike 
other evaluation criteria, it can be applied under widely different circumstances. 
Although in some sense equivalent to Bayes’ rule in that, as we have seen, devising 
a coding scheme for theories is tantamount to assigning them a prior probability 
distribution, schemes for coding are somehow far more tangible and easier to think 
about in concrete terms than intuitive prior probabilities. To illustrate this we will 
briefly describe—without entering into coding details—how you might go about 
applying the MDL principle to clustering.

Clustering seems intrinsically difficult to evaluate. Whereas classification or 
association learning has an objective criterion of success—predictions made on test 
cases are either right or wrong—this is not so with clustering. It seems that the only 
realistic evaluation is whether the result of learning—the clustering—proves useful 
in the application context. (It is worth pointing out that really this is the case for all 
types of learning, not just clustering.)

Despite this, clustering can be evaluated from a description-length perspective. 
Suppose a cluster-learning technique divides the training set E into k clusters. If 
these clusters are natural ones, it should be possible to use them to encode E more 
efficiently. The best clustering will support the most efficient encoding.

One way of encoding the instances in E with respect to a given clustering is to 
start by encoding the cluster centers—the average value of each attribute over all 
instances in the cluster. Then, for each instance in E, transmit which cluster it belongs 
to (in log2 k bits) followed by its attribute values with respect to the cluster center—
perhaps as the numeric difference of each attribute value from the center. Couched 
as it is in terms of averages and differences, this description presupposes numeric 
attributes and raises thorny questions of how to code numbers efficiently. Nominal 
attributes can be handled in a similar manner: For each cluster there is a probability 
distribution for the attribute values, and the distributions are different for different 
clusters. The coding issue becomes more straightforward: Attribute values are coded 
with respect to the relevant probability distribution, a standard operation in data 
compression.
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If the data exhibits extremely strong clustering, this technique will result in a 
smaller description length than simply transmitting the elements of E without any 
clusters. However, if the clustering effect is not so strong, it will likely increase 
rather than decrease the description length. The overhead of transmitting cluster-
specific distributions for attribute values will more than offset the advantage gained 
by encoding each training instance relative to the cluster it lies in. This is where 
more sophisticated coding techniques come in. Once the cluster centers have been 
communicated, it is possible to transmit cluster-specific probability distributions 
adaptively, in tandem with the relevant instances: The instances themselves help to 
define the probability distributions, and the probability distributions help to define 
the instances. We will not venture further into coding techniques here. The point is 
that the MDL formulation, properly applied, may be flexible enough to support the 
evaluation of clustering. But actually doing it satisfactorily in practice is not easy.

5.11 FURTHER READING
The statistical basis of confidence tests is well covered in most statistics texts, which 
also give tables of the normal distribution and Student’s distribution. (We use an 
excellent course text by Wild and Seber (1995) that we recommend very strongly if 
you can get hold of it.) “Student” is the nom de plume of a statistician called William 
Gosset, who obtained a post as a chemist in the Guinness brewery in Dublin, Ireland, 
in 1899 and invented the t-test to handle small samples for quality control in 
brewing. The corrected resampled t-test was proposed by Nadeau and Bengio (2003). 
Cross-validation is a standard statistical technique, and its application in machine 
learning has been extensively investigated and compared with the bootstrap by 
Kohavi (1995a). The bootstrap technique itself is thoroughly covered by Efron and 
Tibshirani (1993).

The Kappa statistic was introduced by Cohen (1960). Ting (2002) has investi-
gated a heuristic way of generalizing to the multiclass case the algorithm given in 
Section 5.7 to make two-class learning schemes cost sensitive. Lift charts are 
described by Berry and Linoff (1997). The use of ROC analysis in signal detection 
theory is covered by Egan (1975); this work has been extended for visualizing and 
analyzing the behavior of diagnostic systems (Swets, 1988) and is also used in 
medicine (Beck and Schultz, 1986). Provost and Fawcett (1997) brought the idea of 
ROC analysis to the attention of the machine learning and data mining community. 
Witten et al. (1999b) explain the use of recall and precision in information retrieval 
systems; the F-measure is described by van Rijsbergen (1979). Drummond and Holte 
(2000) introduced cost curves and investigated their properties.

The MDL principle was formulated by Rissanen (1985). Kepler’s discovery of 
his economical three laws of planetary motion, and his doubts about them, are 
recounted by Koestler (1964).

Epicurus’ principle of multiple explanations is mentioned by Li and Vityani 
(1992), quoting from Asmis (1984).
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