
2 Supervised Learning

We discuss supervised learning starting from the simplest case, which

is learning a class from its positive and negative examples. We gener-

alize and discuss the case of multiple classes, then regression, where

the outputs are continuous.

2.1 Learning a Class from Examples

Let us say we want to learn the class, C, of a “family car.” We have a
set of examples of cars, and we have a group of people that we survey to
whom we show these cars. The people look at the cars and label them;
the cars that they believe are family cars are positive examples, and thepositive examples

other cars are negative examples. Class learning is finding a descriptionnegative examples

that is shared by all positive examples and none of the negative examples.
Doing this, we can make a prediction: Given a car that we have not seen
before, by checking with the description learned, we will be able to say
whether it is a family car or not. Or we can do knowledge extraction:
This study may be sponsored by a car company, and the aim may be to
understand what people expect from a family car.

After some discussions with experts in the field, let us say that we reach
the conclusion that among all features a car may have, the features that
separate a family car from other cars are the price and engine power.
These two attributes are the inputs to the class recognizer. Note that
when we decide on this particular input representation, we are ignoringinput

representation various other attributes as irrelevant. Though one may think of other
attributes such as seating capacity and color that might be important for
distinguishing among car types, we will consider only price and engine
power to keep this example simple.



22 2 Supervised Learning

x 2: E
ng

ine
 po

we
r

x1: Pricex1
t

x2
t

Figure 2.1 Training set for the class of a “family car.” Each data point corre-
sponds to one example car, and the coordinates of the point indicate the price
and engine power of that car. ‘+’ denotes a positive example of the class (a family
car), and ‘−’ denotes a negative example (not a family car); it is another type of
car.

Let us denote price as the first input attribute x1 (e.g., in U.S. dollars)
and engine power as the second attribute x2 (e.g., engine volume in cubic
centimeters). Thus we represent each car using two numeric values

x =
[

x1

x2

]

(2.1)

and its label denotes its type

r =
{

1 if x is a positive example
0 if x is a negative example

(2.2)

Each car is represented by such an ordered pair (x, r) and the training
set contains N such examples

X = {xt , r t}Nt=1(2.3)

where t indexes different examples in the set; it does not represent time
or any such order.



2.1 Learning a Class from Examples 23

x 2: E
ng

ine
 po

we
r

x1: Pricep1 p2

e1

e2 C

Figure 2.2 Example of a hypothesis class. The class of family car is a rectangle
in the price-engine power space.

Our training data can now be plotted in the two-dimensional (x1, x2)

space where each instance t is a data point at coordinates (xt1, x
t
2) and its

type, namely, positive versus negative, is given by r t (see figure 2.1).
After further discussions with the expert and the analysis of the data,

we may have reason to believe that for a car to be a family car, its price
and engine power should be in a certain range

(p1 ≤ price ≤ p2) AND (e1 ≤ engine power ≤ e2)(2.4)

for suitable values of p1, p2, e1, and e2. Equation 2.4 thus assumes C to
be a rectangle in the price-engine power space (see figure 2.2).

Equation 2.4 fixes H , the hypothesis class from which we believe C ishypothesis class

drawn, namely, the set of rectangles. The learning algorithm then finds
the particular hypothesis, h ∈H , to approximate C as closely as possible.hypothesis

Though the expert defines this hypothesis class, the values of the pa-
rameters are not known; that is, though we choose H , we do not know
which particular h ∈H is equal, or closest, to C. But once we restrict our



24 2 Supervised Learning

attention to this hypothesis class, learning the class reduces to the easier
problem of finding the four parameters that define h.

The aim is to find h ∈ H that is as similar as possible to C. Let us say
the hypothesis h makes a prediction for an instance x such that

h(x) =
{

1 if h classifies x as a positive example
0 if h classifies x as a negative example

(2.5)

In real life we do not know C(x), so we cannot evaluate how well h(x)
matches C(x). What we have is the training set X , which is a small subset
of the set of all possible x. The empirical error is the proportion of train-empirical error

ing instances where predictions of h do not match the required values

given in X . The error of hypothesis h given the training set X is

E(h|X) =
N
∑

t=1

1(h(xt ) $= r t)(2.6)

where 1(a $= b) is 1 if a $= b and is 0 if a = b (see figure 2.3).
In our example, the hypothesis class H is the set of all possible rec-

tangles. Each quadruple (ph1 , p
h
2 , e

h
1 , e

h
2) defines one hypothesis, h, from

H , and we need to choose the best one, or in other words, we need to
find the values of these four parameters given the training set, to in-
clude all the positive examples and none of the negative examples. Note
that if x1 and x2 are real-valued, there are infinitely many such h for
which this is satisfied, namely, for which the error, E, is 0, but given a
future example somewhere close to the boundary between positive and
negative examples, different candidate hypotheses may make different
predictions. This is the problem of generalization—that is, how well ourgeneralization

hypothesis will correctly classify future examples that are not part of the
training set.

One possibility is to find the most specific hypothesis, S, that is themost specific

hypothesis tightest rectangle that includes all the positive examples and none of the
negative examples (see figure 2.4). This gives us one hypothesis, h = S, as
our induced class. Note that the actual class C may be larger than S but is
never smaller. The most general hypothesis, G, is the largest rectangle wemost general

hypothesis can draw that includes all the positive examples and none of the negative
examples (figure 2.4). Any h ∈ H between S and G is a valid hypothesis
with no error, said to be consistent with the training set, and such hmake
up the version space. Given another training set, S, G, version space, theversion space

parameters and thus the learned hypothesis, h, can be different.



2.1 Learning a Class from Examples 25

Figure 2.3 C is the actual class and h is our induced hypothesis. The point
where C is 1 but h is 0 is a false negative, and the point where C is 0 but h is 1
is a false positive. Other points—namely, true positives and true negatives—are
correctly classified.

Actually, depending on X andH , there may be several Si and Gj which
respectively make up the S-set and the G-set. Every member of the S-set
is consistent with all the instances, and there are no consistent hypothe-
ses that are more specific. Similarly, every member of the G-set is consis-
tent with all the instances, and there are no consistent hypotheses that
are more general. These two make up the boundary sets and any hypoth-
esis between them is consistent and is part of the version space. There is
an algorithm called candidate elimination that incrementally updates the
S- and G-sets as it sees training instances one by one; see Mitchell 1997.
We assume X is large enough that there is a unique S and G.

Given X , we can find S, or G, or any h from the version space and use
it as our hypothesis, h. It seems intuitive to choose h halfway between S
and G; this is to increase the margin, which is the distance between themargin



26 2 Supervised Learning

x 2: E
ng

ine
 po

we
r

x1: Price

C
S

G

Figure 2.4 S is the most specific and G is the most general hypothesis.

boundary and the instances closest to it (see figure 2.5). For our error
function to have a minimum at h with the maximum margin, we should
use an error (loss) function which not only checks whether an instance
is on the correct side of the boundary but also how far away it is. That
is, instead of h(x) that returns 0/1, we need to have a hypothesis that
returns a value which carries a measure of the distance to the boundary
and we need to have a loss function which uses it, different from 1(·)
that checks for equality.

In some applications, a wrong decision may be very costly and in such
a case, we can say that any instance that falls in between S and G is a
case of doubt, which we cannot label with certainty due to lack of data.doubt

In such a case, the system rejects the instance and defers the decision to
a human expert.

Here, we assume that H includes C; that is, there exists h ∈ H , such
that E(h|X) is 0. Given a hypothesis class H , it may be the case that we
cannot learn C; that is, there exists no h ∈ H for which the error is 0.
Thus, in any application, we need to make sure that H is flexible enough,
or has enough “capacity,” to learn C.



2.2 Vapnik-Chervonenkis (VC) Dimension 27

Figure 2.5 We choose the hypothesis with the largest margin, for best separa-
tion. The shaded instances are those that define (or support) the margin; other
instances can be removed without affecting h.

2.2 Vapnik-Chervonenkis (VC) Dimension

Let us say we have a dataset containing N points. These N points can
be labeled in 2N ways as positive and negative. Therefore, 2N different
learning problems can be defined by N data points. If for any of these
problems, we can find a hypothesis h ∈H that separates the positive ex-
amples from the negative, then we say H shatters N points. That is, any
learning problem definable by N examples can be learned with no error
by a hypothesis drawn from H . The maximum number of points that
can be shattered by H is called the Vapnik-Chervonenkis (VC) dimensionVC dimension

of H , is denoted as VC(H ), and measures the capacity of H .
In figure 2.6, we see that an axis-aligned rectangle can shatter four

points in two dimensions. Then VC(H ), when H is the hypothesis class
of axis-aligned rectangles in two dimensions, is four. In calculating the
VC dimension, it is enough that we find four points that can be shattered;
it is not necessary that we be able to shatter any four points in two di-



28 2 Supervised Learning

x 2

x1

Figure 2.6 An axis-aligned rectangle can shatter four points. Only rectangles
covering two points are shown.

mensions. For example, four points placed on a line cannot be shattered
by rectangles. However, we cannot place five points in two dimensions
anywhere such that a rectangle can separate the positive and negative
examples for all possible labelings.

VC dimension may seem pessimistic. It tells us that using a rectangle
as our hypothesis class, we can learn only datasets containing four points
and not more. A learning algorithm that can learn datasets of four points
is not very useful. However, this is because the VC dimension is inde-
pendent of the probability distribution from which instances are drawn.
In real life, the world is smoothly changing, instances close by most of
the time have the same labels, and we need not worry about all possible

labelings. There are a lot of datasets containing many more data points
than four that are learnable by our hypothesis class (figure 2.1). So even
hypothesis classes with small VC dimensions are applicable and are pre-
ferred over those with large VC dimensions, for example, a lookup table
that has infinite VC dimension.



2.3 Probably Approximately Correct (PAC) Learning 29

2.3 Probably Approximately Correct (PAC) Learning

Using the tightest rectangle, S, as our hypothesis, we would like to find
how many examples we need. We would like our hypothesis to be approx-
imately correct, namely, that the error probability be bounded by some
value. We also would like to be confident in our hypothesis in that we
want to know that our hypothesis will be correct most of the time (if not
always); so we want to be probably correct as well (by a probability we
can specify).

In Probably Approximately Correct (PAC) learning, given a class, C, andPAC learning

examples drawn from some unknown but fixed probability distribution,
p(x), we want to find the number of examples, N , such that with prob-
ability at least 1 − δ, the hypothesis h has error at most ε, for arbitrary
δ ≤ 1/2 and ε > 0

P{C∆h ≤ ε} ≥ 1− δ

where C∆h is the region of difference between C and h.
In our case, because S is the tightest possible rectangle, the error region

between C and h = S is the sum of four rectangular strips (see figure 2.7).
We would like to make sure that the probability of a positive example
falling in here (and causing an error) is at most ε. For any of these strips,
if we can guarantee that the probability is upper bounded by ε/4, the
error is at most 4(ε/4) = ε. Note that we count the overlaps in the corners
twice, and the total actual error in this case is less than 4(ε/4). The
probability that a randomly drawn example misses this strip is 1 − ε/4.
The probability that all N independent draws miss the strip is (1−ε/4)N ,
and the probability that all N independent draws miss any of the four
strips is at most 4(1 − ε/4)N , which we would like to be at most δ. We
have the inequality

(1− x) ≤ exp[−x]

So if we choose N and δ such that we have

4 exp[−εN/4] ≤ δ

we can also write 4(1 − ε/4)N ≤ δ. Dividing both sides by 4, taking
(natural) log and rearranging terms, we have

N ≥ (4/ε) log(4/δ)(2.7)



30 2 Supervised Learning

x 2

x1

C
h

Figure 2.7 The difference between h and C is the sum of four rectangular strips,
one of which is shaded.

Therefore, provided that we take at least (4/ε) log(4/δ) independent
examples from C and use the tightest rectangle as our hypothesis h, with
confidence probability at least 1 − δ, a given point will be misclassified
with error probability at most ε. We can have arbitrary large confidence
by decreasing δ and arbitrary small error by decreasing ε, and we see in
equation 2.7 that the number of examples is a slowly growing function of
1/ε and 1/δ, linear and logarithmic, respectively.

2.4 Noise

Noise is any unwanted anomaly in the data and due to noise, the classnoise

may be more difficult to learn and zero error may be infeasible with a
simple hypothesis class (see figure 2.8). There are several interpretations
of noise:

! There may be imprecision in recording the input attributes, which may
shift the data points in the input space.

! There may be errors in labeling the data points, which may relabel



2.4 Noise 31

x 2

x1

h1

h2

Figure 2.8 When there is noise, there is not a simple boundary between the pos-
itive and negative instances, and zero misclassification error may not be possible
with a simple hypothesis. A rectangle is a simple hypothesis with four param-
eters defining the corners. An arbitrary closed form can be drawn by piecewise
functions with a larger number of control points.

positive instances as negative and vice versa. This is sometimes called
teacher noise.

! There may be additional attributes, which we have not taken into ac-
count, that affect the label of an instance. Such attributes may be
hidden or latent in that they may be unobservable. The effect of these
neglected attributes is thus modeled as a random component and is
included in “noise.”

As can be seen in figure 2.8, when there is noise, there is not a simple
boundary between the positive and negative instances and to separate
them, one needs a complicated hypothesis that corresponds to a hypoth-
esis class with larger capacity. A rectangle can be defined by four num-
bers, but to define a more complicated shape one needs a more complex
model with a much larger number of parameters. With a complex model,



32 2 Supervised Learning

one can make a perfect fit to the data and attain zero error; see the wiggly
shape in figure 2.8. Another possibility is to keep the model simple and
allow some error; see the rectangle in figure 2.8.

Using the simple rectangle (unless its training error is much bigger)
makes more sense because of the following:

1. It is a simple model to use. It is easy to check whether a point is
inside or outside a rectangle and we can easily check, for a future data
instance, whether it is a positive or a negative instance.

2. It is a simple model to train and has fewer parameters. It is easier
to find the corner values of a rectangle than the control points of an
arbitrary shape. With a small training set when the training instances
differ a little bit, we expect the simpler model to change less than a
complex model: A simple model is thus said to have less variance.
On the other hand, a too simple model assumes more, is more rigid,
and may fail if indeed the underlying class is not that simple: A sim-
pler model has more bias. Finding the optimal model corresponds to
minimizing both the bias and the variance.

3. It is a simple model to explain. A rectangle simply corresponds to
defining intervals on the two attributes. By learning a simple model,
we can extract information from the raw data given in the training set.

4. If indeed there is mislabeling or noise in input and the actual class
is really a simple model like the rectangle, then the simple rectangle,
because it has less variance and is less affected by single instances,
will be a better discriminator than the wiggly shape, although the sim-
ple one may make slightly more errors on the training set. Given
comparable empirical error, we say that a simple (but not too simple)
model would generalize better than a complex model. This principle
is known as Occam’s razor, which states that simpler explanations areOccam’s razor

more plausible and any unnecessary complexity should be shaved off.

2.5 Learning Multiple Classes

In our example of learning a family car, we have positive examples be-
longing to the class family car and the negative examples belonging to all
other cars. This is a two-class problem. In the general case, we have K



2.5 Learning Multiple Classes 33

En
gin

e p
ow

er

Price

Family car

Sports car

Luxury sedan

?

?

Figure 2.9 There are three classes: family car, sports car, and luxury sedan.
There are three hypotheses induced, each one covering the instances of one
class and leaving outside the instances of the other two classes. ‘?’ are reject
regions where no, or more than one, class is chosen.

classes denoted as Ci , i = 1, . . . , K, and an input instance belongs to one
and exactly one of them. The training set is now of the form

X = {xt , r t}Nt=1

where r has K dimensions and

r ti =
{

1 if xt ∈ Ci
0 if xt ∈ Cj , j $= i

(2.8)

An example is given in figure 2.9 with instances from three classes:
family car, sports car, and luxury sedan.

In machine learning for classification, we would like to learn the bound-
ary separating the instances of one class from the instances of all other
classes. Thus we view a K-class classification problem as K two-class
problems. The training examples belonging to Ci are the positive in-
stances of hypothesis hi and the examples of all other classes are the



34 2 Supervised Learning

negative instances of hi . Thus in a K-class problem, we have K hypothe-
ses to learn such that

hi(x
t ) =

{

1 if xt ∈ Ci
0 if xt ∈ Cj , j $= i

(2.9)

The total empirical error takes a sum over the predictions for all classes
over all instances:

E({hi}Ki=1|X) =
N
∑

t=1

K
∑

i=1

1(hi(x
t ) $= r ti )(2.10)

For a given x, ideally only one of hi(x), i = 1, . . . , K is 1 and we can
choose a class. But when no, or two or more, hi(x) is 1, we cannot choose
a class, and this is the case of doubt and the classifier rejects such cases.reject

In our example of learning a family car, we used only one hypothesis
and only modeled the positive examples. Any negative example outside
is not a family car. Alternatively, sometimes we may prefer to build two
hypotheses, one for the positive and the other for the negative instances.
This assumes a structure also for the negative instances that can be cov-
ered by another hypothesis. Separating family cars from sports cars is
such a problem; each class has a structure of its own. The advantage is
that if the input is a luxury sedan, we can have both hypotheses decide
negative and reject the input.

If in a dataset, we expect to have all classes with similar distribution—
shapes in the input space—then the same hypothesis class can be used
for all classes. For example, in a handwritten digit recognition dataset,
we would expect all digits to have similar distributions. But in a medical
diagnosis dataset, for example, where we have two classes for sick and
healthy people, we may have completely different distributions for the
two classes; there may be multiple ways for a person to be sick, reflected
differently in the inputs: All healthy people are alike; each sick person is
sick in his or her own way.

2.6 Regression

In classification, given an input, the output that is generated is Boolean;
it is a yes/no answer. When the output is a numeric value, what we would
like to learn is not a class, C(x) ∈ {0,1}, but is a numeric function. In



2.6 Regression 35

machine learning, the function is not known but we have a training set of
examples drawn from it

X = {xt , r t}Nt=1

where r t ∈ &. If there is no noise, the task is interpolation. We would likeinterpolation

to find the function f (x) that passes through these points such that we
have

r t = f (xt)
In polynomial interpolation, givenN points, we find the (N−1)st degree

polynomial that we can use to predict the output for any x. This is called
extrapolation if x is outside of the range of xt in the training set. Inextrapolation

time-series prediction, for example, we have data up to the present and
we want to predict the value for the future. In regression, there is noiseregression

added to the output of the unknown function

r t = f (xt)+ ε(2.11)

where f (x) ∈ & is the unknown function and ε is random noise. The ex-
planation for noise is that there are extra hidden variables that we cannot
observe

rt = f∗(xt ,zt )(2.12)

where zt denote those hidden variables. We would like to approximate
the output by our model g(x). The empirical error on the training set X
is

E(g|X) = 1
N

N
∑

t=1

[r t − g(xt )]2(2.13)

Because r and g(x) are numeric quantities, for example, ∈ &, there is
an ordering defined on their values and we can define a distance between
values, as the square of the difference, which gives us more informa-
tion than equal/not equal, as used in classification. The square of the
difference is one error (loss) function that can be used; another is the ab-
solute value of the difference. We will see other examples in the coming
chapters.

Our aim is to find g(·) that minimizes the empirical error. Again our
approach is the same; we assume a hypothesis class for g(·) with a small
set of parameters. If we assume that g(x) is linear, we have

g(x) = w1x1 + · · · +wdxd +w0 =
d
∑

j=1

wjxj +w0(2.14)



36 2 Supervised Learning

 x: milage

 y:
 pr

ice

Figure 2.10 Linear, second-order, and sixth-order polynomials are fitted to the
same set of points. The highest order gives a perfect fit, but given this much
data it is very unlikely that the real curve is so shaped. The second order seems
better than the linear fit in capturing the trend in the training data.

Let us now go back to our example in section 1.2.3 where we estimated
the price of a used car. There we used a single input linear model

g(x) = w1x+w0(2.15)

where w1 and w0 are the parameters to learn from data. The w1 and w0

values should minimize

E(w1, w0|X) =
1
N

N
∑

t=1

[r t − (w1x
t +w0)]

2(2.16)

Its minimum point can be calculated by taking the partial derivatives
of E with respect to w1 and w0, setting them equal to 0, and solving for
the two unknowns:

w1 =
∑

t x
tr t − xrN

∑

t (xt)2 −Nx2

w0 = r −w1x(2.17)



2.7 Model Selection and Generalization 37

Table 2.1 With two inputs, there are four possible cases and sixteen possible
Boolean functions.

x1 x2 h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h11 h12 h13 h14 h15 h16

0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

where x =
∑

t x
t/N and r =

∑

t r
t/N . The line found is shown in figure 1.2.

If the linear model is too simple, it is too constrained and incurs a
large approximation error, and in such a case, the output may be taken
as a higher-order function of the input—for example, quadratic

g(x) = w2x
2 +w1x+w0(2.18)

where similarly we have an analytical solution for the parameters. When
the order of the polynomial is increased, the error on the training data de-
creases. But a high-order polynomial follows individual examples closely,
instead of capturing the general trend; see the sixth-order polynomial in
figure 2.10. This implies that Occam’s razor also applies in the case of re-
gression and we should be careful when fine-tuning the model complexity
to match it with the complexity of the function underlying the data.

2.7 Model Selection and Generalization

Let us start with the case of learning a Boolean function from examples.
In a Boolean function, all inputs and the output are binary. There are
2d possible ways to write d binary values and therefore, with d inputs,
the training set has at most 2d examples. As shown in table 2.1, each
of these can be labeled as 0 or 1, and therefore, there are 22d possible
Boolean functions of d inputs.

Each distinct training example removes half the hypotheses, namely,
those whose guesses are wrong. For example, let us say we have x1 = 0,
x2 = 1 and the output is 0; this removes h5, h6, h7, h8, h13, h14, h15, h16.
This is one way to interpret learning: we start with all possible hypothe-
sis and as we see more training examples, we remove those hypotheses



38 2 Supervised Learning

that are not consistent with the training data. In the case of a Boolean
function, to end up with a single hypothesis we need to see all 2d training
examples. If the training set we are given contains only a small subset of
all possible instances, as it generally does—that is, if we know what the
output should be for only a small percentage of the cases—the solution
is not unique. After seeing N example cases, there remain 22d−N possible
functions. This is an example of an ill-posed problem where the data byill-posed problem

itself is not sufficient to find a unique solution.
The same problem also exists in other learning applications, in classi-

fication, and in regression. As we see more training examples, we know
more about the underlying function, and we carve out more hypotheses
that are inconsistent from the hypothesis class, but we still are left with
many consistent hypotheses.

So because learning is ill-posed, and data by itself is not sufficient to
find the solution, we should make some extra assumptions to have a
unique solution with the data we have. The set of assumptions we make
to have learning possible is called the inductive bias of the learning al-inductive bias

gorithm. One way we introduce inductive bias is when we assume a hy-
pothesis class H . In learning the class of family car, there are infinitely
many ways of separating the positive examples from the negative exam-
ples. Assuming the shape of a rectangle is one inductive bias, and then
the rectangle with the largest margin for example, is another inductive
bias. In linear regression, assuming a linear function is an inductive bias,
and among all lines, choosing the one that minimizes squared error is
another inductive bias.

But we know that each hypothesis class has a certain capacity and can
learn only certain functions. The class of functions that can be learned
can be extended by using a hypothesis class with larger capacity, contain-
ing more complex hypotheses. For example, the hypothesis class that is a
union of two rectangles has higher capacity, but its hypotheses are more
complex. Similarly in regression, as we increase the order of the polyno-
mial, the capacity and complexity increase. The question now is to decide
where to stop.

Thus learning is not possible without inductive bias, and now the ques-
tion is how to choose the right bias. This is called model selection, whichmodel selection

is choosing between possible H . In answering this question, we should
remember that the aim of machine learning is rarely to replicate the train-
ing data but the prediction for new cases. That is we would like to be able
to generate the right output for an input instance outside the training set,



2.7 Model Selection and Generalization 39

one for which the correct output is not given in the training set. How well
a model trained on the training set predicts the right output for new
instances is called generalization.generalization

For best generalization, we should match the complexity of the hypoth-
esis class H with the complexity of the function underlying the data. If
H is less complex than the function, we have underfitting, for example,underfitting

when trying to fit a line to data sampled from a third-order polynomial. In
such a case, as we increase the complexity, the training error decreases.
But if we haveH that is too complex, the data is not enough to constrain
it and we may end up with a bad hypothesis, h ∈ H , for example, when
fitting two rectangles to data sampled from one rectangle. Or if there
is noise, an overcomplex hypothesis may learn not only the underlying
function but also the noise in the data and may make a bad fit, for exam-
ple, when fitting a sixth-order polynomial to noisy data sampled from a
third-order polynomial. This is called overfitting. In such a case, havingoverfitting

more training data helps but only up to a certain point. Given a training
set andH , we can find h ∈H that has the minimum training error but if
H is not chosen well, no matter which h ∈ H we pick, we will not have
good generalization.

We can summarize our discussion citing the triple trade-off (Dietterichtriple trade-off

2003). In all learning algorithms that are trained from example data,
there is a trade-off between three factors:

! the complexity of the hypothesis we fit to data, namely, the capacity
of the hypothesis class,

! the amount of training data, and

! the generalization error on new examples.

As the amount of training data increases, the generalization error de-
creases. As the complexity of the model class H increases, the general-
ization error decreases first and then starts to increase. The generaliza-
tion error of an overcomplex H can be kept in check by increasing the
amount of training data but only up to a point. If the data is sampled
from a line and if we are fitting a higher-order polynomial, the fit will be
constrained to lie close to the line if there is training data in the vicin-
ity; where it has not been trained, a high-order polynomial may behave
erratically.

We can measure the generalization ability of a hypothesis, namely, the
quality of its inductive bias, if we have access to data outside the training



40 2 Supervised Learning

set. We simulate this by dividing the training set we have into two parts.
We use one part for training (i.e., to fit a hypothesis), and the remaining
part is called the validation set and is used to test the generalizationvalidation set

ability. That is, given a set of possible hypothesis classes Hi , for each
we fit the best hi ∈ Hi on the training set. Then, assuming large enough
training and validation sets, the hypothesis that is the most accurate on
the validation set is the best one (the one that has the best inductive bias).
This process is called cross-validation. So, for example, to find the rightcross-validation

order in polynomial regression, given a number of candidate polynomials
of different orders where polynomials of different orders correspond to
Hi , for each order, we find the coefficients on the training set, calculate
their errors on the validation set, and take the one that has the least
validation error as the best polynomial.

Note that if we need to report the error to give an idea about the ex-
pected error of our best model, we should not use the validation error.
We have used the validation set to choose the best model, and it has ef-
fectively become a part of the training set. We need a third set, a test set,test set

sometimes also called the publication set, containing examples not used
in training or validation. An analogy from our lives is when we are taking
a course: the example problems that the instructor solves in class while
teaching a subject form the training set; exam questions are the valida-
tion set; and the problems we solve in our later, professional life are the
test set.

We cannot keep on using the same training/validation split either, be-
cause after having been used once, the validation set effectively becomes
part of training data. This will be like an instructor who uses the same
exam questions every year; a smart student will figure out not to bother
with the lectures and will only memorize the answers to those questions.

We should always remember that the training data we use is a random
sample, that is, for the same application, if we collect data once more, we
will get a slightly different dataset, the fitted h will be slightly different
and will have a slightly different validation error. Or if we have a fixed set
which we divide for training, validation, and test, we will have different
errors depending on how we do the division. These slight differences in
error will allow us to estimate how large differences should be to be con-
sidered significant and not due to chance. That is, in choosing between
two hypothesis classes Hi and Hj , we will use them both multiple times
on a number of training and validation sets and check if the difference
between average errors of hi and hj is larger than the average difference



2.8 Dimensions of a Supervised Machine Learning Algorithm 41

between multiple hi . In chapter 19, we discuss how to design machine
learning experiments using limited data to best answer our questions—
for example, which is the best hypothesis class?—and how to analyze the
results of these experiments so that we can achieve statistically signifi-
cant conclusions minimally affected by random chance.

2.8 Dimensions of a Supervised Machine Learning Algorithm

Let us now recapitulate and generalize. We have a sample

X = {xt, r t}Nt=1(2.19)

The sample is independent and identically distributed (iid); the orderingiid

is not important and all instances are drawn from the same joint dis-
tribution p(x, r). t indexes one of the N instances, xt is the arbitrary
dimensional input, and r t is the associated desired output. r t is 0/1 for
two-class learning, is a K-dimensional binary vector (where exactly one of
the dimensions is 1 and all others 0) for (K > 2)-class classification, and
is a real value in regression.

The aim is to build a good and useful approximation to r t using the
model g(xt|θ). In doing this, there are three decisions we must make:

1. Model we use in learning, denoted as

g(x|θ)

where g(·) is the model, x is the input, and θ are the parameters.

g(·) defines the hypothesis class H , and a particular value of θ in-
stantiates one hypothesis h ∈ H . For example, in class learning, we
have taken a rectangle as our model whose four coordinates make up
θ; in linear regression, the model is the linear function of the input
whose slope and intercept are the parameters learned from the data.
The model (inductive bias), or H , is fixed by the machine learning sys-
tem designer based on his or her knowledge of the application and the
hypothesis h ic chosen (parameters are tuned) by a learning algorithm
using the training set, sampled from p(x, r).

2. Loss function, L(·), to compute the difference between the desired out-
put, rt , and our approximation to it, g(xt|θ), given the current value



42 2 Supervised Learning

of the parameters, θ. The approximation error, or loss, is the sum of
losses over the individual instances

E(θ|X) =
∑

t

L(r t , g(xt|θ))(2.20)

In class learning where outputs are 0/1, L(·) checks for equality or not;
in regression, because the output is a numeric value, we have ordering
information for distance and one possibility is to use the square of the
difference.

3. Optimization procedure to find θ∗ that minimizes the total error

θ∗ = arg min
θ
E(θ|X)(2.21)

where argmin returns the argument that minimizes. In regression, we
can solve analytically for the optimum. With more complex models
and error functions, we may need to use more complex optimization
methods, for example, gradient-based methods, simulated annealing,
or genetic algorithms.

For this to work well, the following conditions should be satisfied: First,
the hypothesis class of g(·) should be large enough, that is, have enough
capacity, to include the unknown function that generated the data that is
represented in rt in a noisy form. Second, there should be enough train-
ing data to allow us to pinpoint the correct (or a good enough) hypothesis
from the hypothesis class. Third, we should have a good optimization
method that finds the correct hypothesis given the training data.

Different machine learning algorithms differ either in the models they
assume (their hypothesis class/inductive bias), the loss measures they
employ, or the optimization procedure they use. We will see many exam-
ples in the coming chapters.

2.9 Notes

Mitchell proposed version spaces and the candidate elimination algo-
rithm to incrementally build S and G as instances are given one by one;
see Mitchell 1997 for a recent review. The rectangle-learning is from exer-
cise 2.4 of Mitchell 1997. Hirsh (1990) discusses how version spaces can
handle the case when instances are perturbed by small amount of noise.



2.10 Exercises 43

In one of the earliest works on machine learning, Winston (1975) pro-
posed the idea of a “near miss." A near miss is a negative example that
is very much like a positive example. In our terminology, we see that
a near miss would be an instance that falls in the gray area between S
and G, an instance which would affect the margin, and would hence be
more useful for learning, than an ordinary positive or negative example.
The instances that are close to the boundary are the ones that define it
(or support it); those which are surrounded by many instances with the
same label can be added/removed without affecting the boundary.

Related to this idea is active learning where the learning algorithm can
generate instances itself and ask for them to be labeled, instead of pas-
sively being given them (Angluin 1988) (see exercise 4).

VC dimension was proposed by Vapnik and Chervonenkis in the early
1970s. A recent source is Vapnik 1995 where he writes, “Nothing is more
practical than a good theory” (p. x), which is as true in machine learning as
in any other branch of science. You should not rush to the computer; you
can save yourself from hours of useless programming by some thinking,
a notebook, and a pencil—you may also need an eraser.

The PAC model was proposed by Valiant (1984). The PAC analysis of
learning a rectangle is from Blumer et al. 1989. A good textbook on com-
putational learning theory covering PAC learning and VC dimension is
Kearns and Vazirani 1994.

2.10 Exercises

1. Let us say our hypothesis class is a circle instead of a rectangle. What are the
parameters? How can the parameters of a circle hypothesis be calculated in
such a case? What if it is an ellipse? Why does it make more sense to use
an ellipse instead of a circle? How can you generalize your code to K > 2
classes?

2. Imagine our hypothesis is not one rectangle but a union of two (or m > 1)
rectangles. What is the advantage of such a hypothesis class? Show that any
class can be represented by such a hypothesis class with large enough m.

3. The complexity of most learning algorithms is a function of the training set.
Can you propose a filtering algorithm that finds redundant instances?

4. If we have a supervisor who can provide us with the label for any x, where
should we choose x to learn with fewer queries?

5. In equation 2.13, we summed up the squares of the differences between the
actual value and the estimated value. This error function is the one most



44 2 Supervised Learning

x1

x 2

Figure 2.11 A line separating positive and negative instances.

frequently used, but it is one of several possible error functions. Because
it sums up the squares of the differences, it is not robust to outliers. What
would be a better error function to implement robust regression?

6. Derive equation 2.17.

7. Assume our hypothesis class is the set of lines, and we use a line to separate
the positive and negative examples, instead of bounding the positive exam-
ples as in a rectangle, leaving the negatives outside (see figure 2.11). Show
that the VC dimension of a line is 3.

8. Show that the VC dimension of the triangle hypothesis class is 7 in two di-
mensions. (Hint: For best separation, it is best to place the seven points
equidistant on a circle.)

9. Assume as in exercise 7 that our hypothesis class is the set of lines. Write
down an error function that not only minimizes the number of misclassifica-
tions but also maximizes the margin.

10. One source of noise is error in the labels. Can you propose a method to find
data points that are highly likely to be mislabeled?

2.11 References

Angluin, D. 1988. “Queries and Concept Learning.” Machine Learning 2: 319–
342.

Blumer, A., A. Ehrenfeucht, D. Haussler, and M. K. Warmuth. 1989. “Learnability
and the Vapnik-Chervonenkis Dimension.” Journal of the ACM 36: 929–965.



2.11 References 45

Dietterich, T. G. 2003. “Machine Learning.” In Nature Encyclopedia of Cognitive

Science. London: Macmillan.

Hirsh, H. 1990. Incremental Version Space Merging: A General Framework for

Concept Learning. Boston: Kluwer.

Kearns, M. J., and U. V. Vazirani. 1994. An Introduction to Computational Learn-

ing Theory. Cambridge, MA: MIT Press.

Mitchell, T. 1997. Machine Learning. New York: McGraw-Hill.

Valiant, L. 1984. “A Theory of the Learnable.” Communications of the ACM 27:
1134–1142.

Vapnik, V. N. 1995. The Nature of Statistical Learning Theory. New York:
Springer.

Winston, P. H. 1975. “Learning Structural Descriptions from Examples.” In
The Psychology of Computer Vision, ed. P. H. Winston, 157–209. New York:
McGraw-Hill.


	Contents
	Series Foreword
	Figures
	Tables
	Preface
	Acknowledgments
	Notes for the Second Edition
	Notations
	1 Introduction
	2 Supervised Learning
	3 Bayesian Decision Theory
	4 Parametric Methods
	5 Multivariate Methods
	6 Dimensionality Reduction
	7 Clustering
	8 Nonparametric Methods
	9 Decision Trees
	10 Linear Discrimination
	11 Multilayer Perceptrons
	12 Local Models
	13 Kernel Machines
	14 Bayesian Estimation
	15 Hidden Markov Models
	16 Graphical Models
	17 Combining Multiple Learners

	18 Reinforcement Learning
	19 Design and Analysis of Machine Learning Experiments
	A Probability
	Index

